The third one sliding friction
Explanation:
We have that the momentum p is given by the formula p=mv where m is the mass and v is the velocity. Since for A p=-14kgm/s and m=7, we have that the velocity is -14/7=-2m/s. Hence its speed is 2 m/s.
For b we have that p=15kgm/s and v=3m/s. Because m=p/v, we have m=3kg.
We also have that the momentum is conserved in this system. Hence, the net sum of the momentum of the 2 snowballs equals the momentum of the single giant ball. Hence, p(total)=p(combined)=-14+15=1kgm/s (momentum is a vector; the positive sign means that it tends to the positive direction).
Answer:
7.2g
Explanation:
From the expression of latent heat of steam, we have
Heat supplied by steam = Heat gain water + Heat gain by calorimeter
mathematically,
+
=
+
L=specific latent heat of water(steam)=2268J/g
=specific heat capacity=4.2J/gK
=specific heat capacity of calorimeter =0.9J/gk
=280g
=38g
α=change in temperature
=(40-25)=15
=(40-25)=15
=(100-40)=60
Note: the temperature of the calorimeter is the temperature of it content.
From the equation, we can make
the subject of formula

Hence

Hence the amount of steam needed is 7.2g
Failed experiments, uncontrolled variables, invalid data, and generalized human error