Answer:
F = 2.30 10⁴ N
Explanation:
The force required to link two gates must be equal to or greater than the electrostatic force of repulsion, because the protons have equal charges.
F = k q₁ q₂ / r²
Where k is the Coulomb constant that is worth 8.99 10⁹ N m² / C²
In this case the proton charge is 1.6 10⁻¹⁹ C and the distance between them is approximately the diameter of the core r = 10⁻¹⁵ m
Let's calculate
F = 8.99 10⁹ (1.6 10⁻¹⁹)² / (10⁻¹⁵)²
F = 2.30 10⁴ N
The bond strength must be equal to or greater than this value
Answer:
W = 28226.88 N
Explanation:
Given,
Mass of the satellite, m = 5832 Kg
Height of the orbiting satellite from the surface, h = 4.13 x 10⁵ m
The time period of the orbit, T = 1.9 h
= 6840 s
The radius of the planet, R = 4.38 x 10⁶ m
The time period of the satellite is given by the formula
second
Squaring the terms and solving it for 'g'
g = 4 π²
m/s²
Substituting the values in the above equation
g = 4 π²
g = 4.84 m/s²
Therefore, the weight
w = m x g newton
= 5832 Kg x 4.84 m/s²
= 28226.88 N
Hence, the weight of the satellite at the surface, W = 28226.88 N
Answer:
313.92w
Explanation:
Formula for power:
P=W/∆t = Fv
Givens:
m=20kg
∆y=4.0m
∆t=2.5s
a=9.81m/s²
In order to find power, we first need to solve for work.
W=Fd (force*displacement), f=mg
W=mg∆y
W=(20kg)(9.81m/s²)(4.0m)
W=784.8J
P=W/∆t
P=784.8J/2.5s
P=313.92 watts
Answer:
True
Explanation:
This is a true statement my friend :)