Answer:
The unbalanced force that caused the ball to stop was friction
Explanation:
As Newton's second law states, the acceleration of an object is proportional to the net force applied on the object:

therefore, in order to move at constant speed, an object should have a net force of zero (balanced forces) acting on it.
In this case, the ball slows down and eventually comes to a stop: it means that the ball is decelerating, so there are unbalanced forces (net force different from zero) acting on it. The unbalanced force acting on the ball is the friction: friction is a force against the motion of the object, which is due to the contact between the surface of the ball and the surface of the street, and this force is responsible for slowing down the ball.
Answer:
Momentum (P) is 20kgm/s
Explanation:
P is the product of the mass and velocity of a moving object
P= m. v if we substitute the values of mass and the velocity as given in the pproblem
P=5 . 4 = 20kgm/s
Explanation:
Load=800N
Effort=200N
1. Mechanical Advantage = LOAD/EFFORT
= 800N/200N
= 4
2 Velocity Ratio = no. Of pulleys =5
3. Efficiency = Mechanical advantage / velocity ratio × 100%
= (4/5)×100%
=80%
4. output work= load×load distance
= 800N × 5m
= 4 × 1000J
5. Efficiency = (output work/input work) ×100%
Or, 80% = (4000J/input work) ×100%
Or, 80%/100% = 4000J/inputwork
Or, 4/5 = 4000J/inputwork
Or, input work =4000J × 5/4
Input work = 5×1000J
I hope it helped! ;-)
When an object is moving around in circles, there are two forces that keeps it in its circular orbit. These are the centripetal and the centrifugal forces. They are equal in magnitude, but they differ in the direction. The centripetal force is the force that pulls the object toward the circle's center. The centrifugal force is the force that pushed the object away from the circle's center.
Applying Newton's Second Law of Motions, any force is equal to its mass times its acceleration. For an object moving in circles, the force here is centrifugal or centripetal force, and the acceleration is the centripetal or centrifugal acceleration which is equal to
a = v²/r,
where v is the linear or tangential velocity
r is the radius of the circle
Applying this to Newton's Second Law of Motion,
F = mv²/r
Substituting the values,
F = (1,520 kg)(24 m/s)²/455 m
F = 1,924.22 N
The answer is C because thats what the answer is so good luck in the class