(F)(M)=A
Force times Mass equals Acceleration.
The answer is TRUE.
If the mass increases the number on the left side of the equation increases, thus increasing the right side as well.
KE=1/2mv^2 - equation for kinetic energy
KE=(1/2)(0.12 kg)((7.8 m/s)^2 - plug it into the formula
KE=(0.06 kg)(60.84 m/s) - multiply 1/2 to the mass and square the speed
KE= 3.7 J - answer
Hope this helps
Answer:
<u>Searching in google I found the total mass and the radius of the ball (m = 1.5 kg and r = 10 cm) which are needed to solve the problem!</u>
The ball rotates 6.78 revolutions.
Explanation:
<u>Searching in google I found the total mass and the radius of the ball (m = 1.5 kg and r = 10 cm) which are needed to solve the problem!</u>
At the bottom the ball has the following angular speed:

Now, we need to find the distance traveled by the ball (L) by using θ=28° and h(height) = 2 m:
To find the revolutions we need the time, which can be found using the following equation:
(1)
So first, we need to find the acceleration:
(2)
By entering equation (2) into (1) we have:

Since it starts from rest (v₀ = 0):

Finally, we can find the revolutions:

Therefore, the ball rotates 6.78 revolutions.
I hope it helps you!
This distance is known as the amplitude of the wave, and is the characteristic height of the wave, above or below the equilibrium position. Normally the symbol A is used to represent the amplitude of a wave. The SI unit of amplitude is the metre (m).