1) Compund Ir (x) O(y)
2) Mass of iridium = mass of crucible and iridium - mass of crucible = 39.52 g - 38.26 g = 1.26 g
3) Mass of iridium oxide = mass of crucible and iridium oxide - mass of crucible = 39.73g - 38.26g = 1.47g
4) Mass of oxygen = mass of iridum oxide - mass of iridium = 1.47g - 1.26g = 0.21g
5) Convert grams to moles
moles of iridium = mass of iridium / molar mass of iridium = 1.26 g / 192.17 g/mol = 0.00656 moles
moles of oxygen = mass of oxygen / molar mass of oxygen = 0.21 g / 15.999 g/mol = 0.0131
6) Find the proportion of moles
Divide by the least of the number of moles, i.e. 0.00656
Ir: 0.00656 / 0.00656 = 1
O: 0.0131 / 0.00656 = 2
=> Empirical formula = Ir O2 (where 2 is the superscript for O)
Answer: Ir O2
Step 1 : write a valanced equation..
NaOH + HCl 》NaCl + H2O
Step 2 : find the number of mole of HCl..
1000 ml ..contains 4.3 mole
15ml... (4.3÷1000)×15 =...
Stem 3 : use mole ratio....
HCl : NaOH
1 : 1
So mole is same as calculated above...
Step 4 :
3.5 mole of NaOH is in 1000ml
(4.3÷1000)×15 mole is in ....
Do the calculation
Answer:
wax, candlewick, and oxygen
Explanation:
The burning of the candle is both a physical as well as a chemical change. The reactants are the substances or the raw materials that are required for a reaction to the process. In the process of burning a candle, the reactants are the fuel which includes wax and wick, and oxygen which is found in the air. The products found at the end of the reaction are carbon dioxide and water vapor.
D will because water just turns from liquid to a gas by adding heat. That is a physical change. The other equations are chemical changes.
Combustion reaction for menthol is as follows;
CxHyOz + O₂ ---> xCO₂ + H₂O
Mass of CO₂ formed - 28.16 mg
Therefore number of moles formed - 28.16/ 44 g/mol = 0.64 mmol
Mass of water formed - 11.53 mg
number of water moles formed - 11.53 mg/18 g/mol = 0.64 mmol
From CO₂,
1 mol of CO₂ - 1 mol of C and 2 mol of O
therefore number of C moles - 0.64 mmol
O moles - 1.28 mmol
from H₂O
1 mol of H₂O - 2 mol of H and 1 mol of O
number of H moles - 1.28 mmol
O moles - 0.64 mmol
Mass of menthol initially - 10 mg
in reactions, the masses of products are equal to the masses of reactants. The excess mass to the products formed is due to O₂ in air
Original mass of menthol - 10 mg
mass of water and CO₂ - 11.53 mg + 28.16 mg = 39.69
Difference in mass - 39.69 - 10 = 29.69 mg
This difference comes from O moles in air - 29.69 mg/ 16 g/mol = 1.8556 mmol
then O moles coming from menthol - (1.28 + 0.64) - 1.8556 = 0.064 mmol
In menthol
C moles - 0.64 mmol
H moles - 1.28 mmol
O moles - 0.064 mmol
ratios of C:H:O
C H O
0.64 1.28 0.064
x1000 x1000 x1000 to get whole numbers
640 1280 64
10 20 1
Simplest ratio of C:H:O is 10:20:1
therefore empirical formula of menthol is C₁₀H₂₀O