Answer:
<h2>My My name: CORN CORNELIUS CORNWALL</h2><h2>My Age: 209374329 years old</h2><h2>Fav song : Baby by justin bieber</h2><h2>most legendary thing that i got : club penguin membership</h2>
Answer/Explanation:
Methanol has a molecular weight (32.04 g/mol), low-boiling point and because of its low boiling point, methanol readily evaporates at room temperature.
Under these specified non-standard conditions, the partial pressure of methanol is lower than its vapor pressure and this explains the reason for the spontaneous evaporation exhibited by methanol.
<u>Answer:</u> The
for the reaction is 51.8 kJ.
<u>Explanation:</u>
Hess’s law of constant heat summation states that the amount of heat absorbed or evolved in a given chemical equation remains the same whether the process occurs in one step or several steps.
According to this law, the chemical equation is treated as ordinary algebraic expressions and can be added or subtracted to yield the required equation. This means that the enthalpy change of the overall reaction is equal to the sum of the enthalpy changes of the intermediate reactions.
The chemical equation for the reaction of carbon and water follows:

The intermediate balanced chemical reaction are:
(1)
( × 2)
(2)
( × 2)
(3)

The expression for enthalpy of the reaction follows:
![\Delta H^o_{rxn}=[2\times \Delta H_1]+[2\times \Delta H_2]+[1\times (-\Delta H_3)]](https://tex.z-dn.net/?f=%5CDelta%20H%5Eo_%7Brxn%7D%3D%5B2%5Ctimes%20%5CDelta%20H_1%5D%2B%5B2%5Ctimes%20%5CDelta%20H_2%5D%2B%5B1%5Ctimes%20%28-%5CDelta%20H_3%29%5D)
Putting values in above equation, we get:
![\Delta H^o_{rxn}=[(2\times (-393.7))+(2\times (-285.9))+(1\times -(-1411))]=51.8kJ](https://tex.z-dn.net/?f=%5CDelta%20H%5Eo_%7Brxn%7D%3D%5B%282%5Ctimes%20%28-393.7%29%29%2B%282%5Ctimes%20%28-285.9%29%29%2B%281%5Ctimes%20-%28-1411%29%29%5D%3D51.8kJ)
Hence, the
for the reaction is 51.8 kJ.
The pH of the monoprotic weak acid is 2.79.
<h3>What are weak acids?</h3>
The weak acids are the acids that do not fully dissociate into ions in the solution. Strong acids fully dissociate into ions.
The chemical reaction is HA(aq) ⇄ A⁻(aq) + H⁺(aq).
c (monoprotic acid) = 0.33 M.
Ka = 1.2·10⁻⁶
[A⁻] = [H⁺] = x
[HA] = 0.33 M - x
Ka = [A⁻]·[H⁺] / [HA]
2. 6 × 10⁻⁶ = x² / (0.33 M - x)
Solve quadratic equation: [H⁺] = 0.000524 M.
pH = -log[H⁺]
pH = -log(0.000524 M)
pH = 2.79
Thus, the pH of the monoprotic weak acid is 2.79
To learn more about weak acids, refer to the below link:
brainly.com/question/13032224
#SPJ4