<span>a) 1960 m
b) 960 m
Assumptions.
1. Ignore air resistance.
2. Gravity is 9.80 m/s^2
For the situation where the balloon was stationary, the equation for the distance the bottle fell is
d = 1/2 AT^2
d = 1/2 9.80 m/s^2 (20s)^2
d = 4.9 m/s^2 * 400 s^2
d = 4.9 * 400 m
d = 1960 m
For situation b, the equation is quite similar except we need to account for the initial velocity of the bottle. We can either assume that the acceleration for gravity is negative, or that the initial velocity is negative. We just need to make certain that the two effects (falling due to acceleration from gravity) and (climbing due to initial acceleration) counteract each other. So the formula becomes
d = 1/2 9.80 m/s^2 (20s)^2 - 50 m/s * T
d = 1/2 9.80 m/s^2 (20s)^2 - 50m/s *20s
d = 4.9 m/s^2 * 400 s^2 - 1000 m
d = 4.9 * 400 m - 1000 m
d = 1960 m - 1000 m
d = 960 m</span>
The average speed will be 2.38×10⁶ m/sec.The average speed of an object indicates the pace at which it will traverse a distance. The metric unit of speed is the meter per second.
<h3>What is the average speed?</h3>
The total distance traveled by an object divided by the total time taken is the average speed.
The speed calculated at any particular instant of time is known as the instantaneous speed.
Given data;
Distance travelled = 4.12x10¹⁶ meter
Time period= 1.73x10¹⁰ sec
The average speed is found as

Hence, the average speed will be 2.38×10⁶ m/sec.
To learn more about the average speed, refer to the link;
brainly.com/question/12322912
#SPJ1