An image that appears upside down behind the focal point is an image that is reflected on a concave mirror. Mirrors reflect different kinds of images based on the placement of an object that is reflected towards it. There are two kinds of mirrors, concave and a convex mirrors, the latter makes objects seem smaller and farther than where it is exactly.
The maximum velocity in a banked road, ignoring friction, is given by;
v = Sqrt (Rg tan ∅), where R = Radius of the curved road = 2*1000/2 = 1000 m, g = gravitational acceleration = 9.81 m/s^2, ∅ = Angle of bank.
Substituting;
30 m/s = Sqrt (1000*9.81*tan∅)
30^2 = 1000*9.81*tan∅
tan ∅ = (30^2)/(1000*9.81) = 0.0917
∅ = tan^-1(0.0917) = 5.24°
Therefore, the road has been banked at 5.24°.
The force equation can easily prove this. F=ma. This states that the force on an object is equal to mass times acceleration. If the mass stays the same and the velocity of the cars increases than that means there is a larger force. This is because in both cases the cars are stopping in almost an instant and the times of the crashes are theoretically identical. Acceleration is the change in velocity over time. If the velocity is higher with the same amount of time than that means there is a higher acceleration. If you plug a higher acceleration into the force equation then you wind up with a higher force and in turn a more damaging collision.
<span />
Answer:
D) They most likely died from not wearing a seatbelt.
Explanation:
Their death was caused by a "motor vehicle" (that's what MV stands for in this case). The most logical answer would be D.
<h2>
Answer: can see</h2>
Explanation:
The portion visible by the human eye of the electromagnetic spectrum is between 380 nm (violet-blue) and 780 nm (red) approximately. Which means this part of the spectrum is located between ultraviolet light and infrared light.
Note the fact only part of the whole electromagnetic spectrum is visible to humans is because the receptors in our eyes are only sensitive to these wavelengths.
Therefore:
<h2>The visible spectrum refers to the portion of the electromagnetic spectrum that <u>we </u><u>
can see</u></h2>