1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
ollegr [7]
3 years ago
13

Find the quotient of 3216 divided by 8

Mathematics
1 answer:
Marat540 [252]3 years ago
4 0
The quotient is simply a fancy would for the remainder.

We then need to divide the numbers as usual:

3216/8 = 1608/4 = 804/2 = 402

As this is a whole number there is no remainder and the quotient is 0.
You might be interested in
If r=7 and S=10, find R. Round answer to the nearest tenth.
ivolga24 [154]
I believe the answer is 35 degrees, or A.
8 0
4 years ago
Read 2 more answers
Square root of 2tanxcosx-tanx=0
kobusy [5.1K]
If you're using the app, try seeing this answer through your browser:  brainly.com/question/3242555

——————————

Solve the trigonometric equation:

\mathsf{\sqrt{2\,tan\,x\,cos\,x}-tan\,x=0}\\\\ \mathsf{\sqrt{2\cdot \dfrac{sin\,x}{cos\,x}\cdot cos\,x}-tan\,x=0}\\\\\\ \mathsf{\sqrt{2\cdot sin\,x}=tan\,x\qquad\quad(i)}


Restriction for the solution:

\left\{ \begin{array}{l} \mathsf{sin\,x\ge 0}\\\\ \mathsf{tan\,x\ge 0} \end{array} \right.


Square both sides of  (i):

\mathsf{(\sqrt{2\cdot sin\,x})^2=(tan\,x)^2}\\\\ \mathsf{2\cdot sin\,x=tan^2\,x}\\\\ \mathsf{2\cdot sin\,x-tan^2\,x=0}\\\\ \mathsf{\dfrac{2\cdot sin\,x\cdot cos^2\,x}{cos^2\,x}-\dfrac{sin^2\,x}{cos^2\,x}=0}\\\\\\ \mathsf{\dfrac{sin\,x}{cos^2\,x}\cdot \left(2\,cos^2\,x-sin\,x \right )=0\qquad\quad but~~cos^2 x=1-sin^2 x}

\mathsf{\dfrac{sin\,x}{cos^2\,x}\cdot \left[2\cdot (1-sin^2\,x)-sin\,x \right]=0}\\\\\\ \mathsf{\dfrac{sin\,x}{cos^2\,x}\cdot \left[2-2\,sin^2\,x-sin\,x \right]=0}\\\\\\ \mathsf{-\,\dfrac{sin\,x}{cos^2\,x}\cdot \left[2\,sin^2\,x+sin\,x-2 \right]=0}\\\\\\ \mathsf{sin\,x\cdot \left[2\,sin^2\,x+sin\,x-2 \right]=0}


Let

\mathsf{sin\,x=t\qquad (0\le t


So the equation becomes

\mathsf{t\cdot (2t^2+t-2)=0\qquad\quad (ii)}\\\\ \begin{array}{rcl} \mathsf{t=0}&\textsf{ or }&\mathsf{2t^2+t-2=0} \end{array}


Solving the quadratic equation:

\mathsf{2t^2+t-2=0}\quad\longrightarrow\quad\left\{ \begin{array}{l} \mathsf{a=2}\\ \mathsf{b=1}\\ \mathsf{c=-2} \end{array} \right.


\mathsf{\Delta=b^2-4ac}\\\\ \mathsf{\Delta=1^2-4\cdot 2\cdot (-2)}\\\\ \mathsf{\Delta=1+16}\\\\ \mathsf{\Delta=17}


\mathsf{t=\dfrac{-b\pm\sqrt{\Delta}}{2a}}\\\\\\ \mathsf{t=\dfrac{-1\pm\sqrt{17}}{2\cdot 2}}\\\\\\ \mathsf{t=\dfrac{-1\pm\sqrt{17}}{4}}\\\\\\ \begin{array}{rcl} \mathsf{t=\dfrac{-1+\sqrt{17}}{4}}&\textsf{ or }&\mathsf{t=\dfrac{-1-\sqrt{17}}{4}} \end{array}


You can discard the negative value for  t. So the solution for  (ii)  is

\begin{array}{rcl} \mathsf{t=0}&\textsf{ or }&\mathsf{t=\dfrac{\sqrt{17}-1}{4}} \end{array}


Substitute back for  t = sin x.  Remember the restriction for  x:

\begin{array}{rcl} \mathsf{sin\,x=0}&\textsf{ or }&\mathsf{sin\,x=\dfrac{\sqrt{17}-1}{4}}\\\\ \mathsf{x=0+k\cdot 180^\circ}&\textsf{ or }&\mathsf{x=arcsin\bigg(\dfrac{\sqrt{17}-1}{4}\bigg)+k\cdot 360^\circ}\\\\\\ \mathsf{x=k\cdot 180^\circ}&\textsf{ or }&\mathsf{x=51.33^\circ +k\cdot 360^\circ}\quad\longleftarrow\quad\textsf{solution.} \end{array}

where  k  is an integer.


I hope this helps. =)

3 0
3 years ago
Solve the equation. Check for extraneous answers
Lady bird [3.3K]
The answer is A i hope this helps 
7 0
3 years ago
Please help!!!will get brainliest!
il63 [147K]
Turn the information into coordinate points.

Point = (time, population)

Point 1 = (1985, 45000)
Point 2 = (2004 , 26000)

Find the slope between these points using the formula

( Slope)—> m = (y2 - y1) / (x2 - x1)
26000-45000/2004-1985=-19000/19= -1000
Average rate of change is decrease of 1000 sea lion per year

I hope that helped
6 0
3 years ago
App 19.study
lions [1.4K]

Answer:

1 \to 22 \to 0.176

2 \to 13 \to 0.104

3 \to 18 \to 0.144

4 \to 29 \to 0.232

5 \to 37 \to 0.296

6 \to 6 \to 0.048

Step-by-step explanation:

Given

n = 125

See attachment for proper table

Required

Complete the table

Experimental probability is calculated as:

Pr = \frac{Frequency}{n}

We use the above formula when the frequency is known.

For result of roll 2, 4 and 6

The frequencies are 13, 29 and 6, respectively

So, we have:

Pr(2) = \frac{13}{125} = 0.104

Pr(4) = \frac{29}{125} = 0.232

Pr(6) = \frac{6}{125} = 0.048

When the frequency is to be calculated, we use:

Pr = \frac{Frequency}{n}

Frequency = n * Pr

For result of roll 3 and 5

The probabilities are 0.144 and 0.296, respectively

So, we have:

Frequency(3) = 125 * 0.144 = 18

Frequency(5) = 125 * 0.296 = 37

For roll of 1 where the frequency and the probability are not known, we use:

Total \ Frequency = 125

So:

Frequency(1) added to others must equal 125

This gives:

Frequency(1) + 13 + 18 + 29 + 37 + 6 = 125

Frequency(1) + 103 = 125

Collect like terms

Frequency(1) =- 103 + 125

Frequency(1) =22

The probability is then calculated as:

Pr(1) = \frac{22}{125}

Pr(1) = 0.176

So, the complete table is:

1 \to 22 \to 0.176

2 \to 13 \to 0.104

3 \to 18 \to 0.144

4 \to 29 \to 0.232

5 \to 37 \to 0.296

6 \to 6 \to 0.048

5 0
3 years ago
Other questions:
  • A right triangle has one angle that measure 23o. The adjacent leg measures 27.6 cm and the hypotenuse measures 30 cm. What is th
    14·2 answers
  • Solve each equation.<br> e. log:(6x – 3) = 2
    14·1 answer
  • How do you get the answer to 10+12y=2y+40
    7·1 answer
  • What is X plus seventeen equals three
    5·1 answer
  • I've been stuck on this for a bit, and I'm still figuring this out in the process. a little help?​
    8·1 answer
  • Find the value of y.
    15·1 answer
  • Express in the form n : 1.<br> Give n as a fully simplified fraction.<br> 20 : 15
    11·2 answers
  • What is the answer please help no links please no links
    13·1 answer
  • Refer to the equation 3x − 2y = 12.
    5·1 answer
  • Warren bought cupcakes for his sister's birthday party. 40% of the 35 cupcakes had sprinkles on top. How many cupcakes had sprin
    11·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!