Answer:
B
Explanation:
I think B is false because you should communicate with all sorts of people, in order to learn different views/sides of something.
Answer: The most likely partial pressures are 98.7MPa for NO₂ and 101.3MPa for N₂O₄
Explanation: To determine the partial pressures of each gas after the increase of pressure, it can be used the equilibrium constant Kp.
For the reaction 2NO₂ ⇄ N₂O₄, the equilibrium constant is:
Kp =
where:
P(N₂O₄) and P(NO₂) are the partial pressure of each gas.
Calculating constant:
Kp =
Kp = 0.0104
After the weights, the total pressure increase to 200 MPa. However, at equilibrium, the constant is the same.
P(N₂O₄) + P(NO₂) = 200
P(N₂O₄) = 200 - P(NO₂)
Kp =
0.0104 =
0.0104 + - 200 = 0
Resolving the second degree equation:
=
= 98.7
Find partial pressure of N₂O₄:
P(N₂O₄) = 200 - P(NO₂)
P(N₂O₄) = 200 - 98.7
P(N₂O₄) = 101.3
The partial pressures are = 98.7 MPa and P(N₂O₄) = 101.3 MPa
Answer:
c) the attraction of an atom for the electrons in a covalent bond.
Explanation:
Electronegativity, symbol χ, is a chemical property describing an atom's ability of to attract a shared pair of electrons to itself. It is influenced by the atomic number of the atom and the distance between the valence electrons and the charged nucleus. As the electronegativity number of atoms increases, the more the atom attracts electrons towards itself.
High energy hope this helps