Answer:
The standard form of the ellipse is
.
Step-by-step explanation:
The major axis of the ellipse is located in the y axis, whereas the minor axis is in the x axis. The center of the ellipse is the midpoint of the line segment between vertices, this is:
(1)
If we know that
and
, then the coordinates of the center are, respectively:
![(h,k) = \frac{1}{2}\cdot (4, 0) + \frac{1}{2}\cdot (4,14)](https://tex.z-dn.net/?f=%28h%2Ck%29%20%3D%20%5Cfrac%7B1%7D%7B2%7D%5Ccdot%20%284%2C%200%29%20%2B%20%5Cfrac%7B1%7D%7B2%7D%5Ccdot%20%284%2C14%29)
![(h,k) = (2,0) + (2, 7)](https://tex.z-dn.net/?f=%28h%2Ck%29%20%3D%20%282%2C0%29%20%2B%20%282%2C%207%29)
![(h, k) = (4, 7)](https://tex.z-dn.net/?f=%28h%2C%20k%29%20%3D%20%284%2C%207%29)
The length of each semiaxis is, respectively:
![a = \sqrt{(1 - 4)^{2}+(7-7)^{2}}](https://tex.z-dn.net/?f=a%20%3D%20%5Csqrt%7B%281%20-%204%29%5E%7B2%7D%2B%287-7%29%5E%7B2%7D%7D)
![a = 3](https://tex.z-dn.net/?f=a%20%3D%203)
![b = \sqrt{(4-4)^{2}+(0-7)^{2}}](https://tex.z-dn.net/?f=b%20%3D%20%5Csqrt%7B%284-4%29%5E%7B2%7D%2B%280-7%29%5E%7B2%7D%7D)
![b = 7](https://tex.z-dn.net/?f=b%20%3D%207)
The standard equation of the ellipse is described by the following formula:
![\frac{(x-h)^{2}}{a^{2}}+ \frac{(y-k)^{2}}{b^{2}} = 1](https://tex.z-dn.net/?f=%5Cfrac%7B%28x-h%29%5E%7B2%7D%7D%7Ba%5E%7B2%7D%7D%2B%20%5Cfrac%7B%28y-k%29%5E%7B2%7D%7D%7Bb%5E%7B2%7D%7D%20%3D%201)
Where:
,
- Coordinates of the center of the ellipse.
,
- Length of the orthogonal semiaxes.
If we know that
,
,
and
, then the standard form of the ellipse is:
![\frac{(x-4)^{2}}{9} + \frac{(y-7)^{2}}{49} = 1](https://tex.z-dn.net/?f=%5Cfrac%7B%28x-4%29%5E%7B2%7D%7D%7B9%7D%20%2B%20%5Cfrac%7B%28y-7%29%5E%7B2%7D%7D%7B49%7D%20%3D%201)