Hi there!
![\large\boxed{b = \frac{a}{ac - 1}}](https://tex.z-dn.net/?f=%5Clarge%5Cboxed%7Bb%20%3D%20%5Cfrac%7Ba%7D%7Bac%20-%201%7D%7D)
We can begin by making each fraction have a common denominator:
If we make each have a common denominator of ab, we get:
![\frac{b}{ab} + \frac{a}{ab} = c](https://tex.z-dn.net/?f=%5Cfrac%7Bb%7D%7Bab%7D%20%2B%20%5Cfrac%7Ba%7D%7Bab%7D%20%3D%20c)
Simplify:
![\frac{a + b}{ab} = c](https://tex.z-dn.net/?f=%5Cfrac%7Ba%20%2B%20b%7D%7Bab%7D%20%20%3D%20c)
Multiply both sides by ab:
![a + b = cab](https://tex.z-dn.net/?f=a%20%2B%20b%20%3D%20cab)
Move b to the opposite side:
![a = cab - b](https://tex.z-dn.net/?f=a%20%3D%20cab%20-%20b)
Factor out b:
![a = b(ac - 1)](https://tex.z-dn.net/?f=a%20%3D%20b%28ac%20-%201%29)
Divide by (ac - 1):
![\frac{a}{ac - 1} = b](https://tex.z-dn.net/?f=%5Cfrac%7Ba%7D%7Bac%20-%201%7D%20%3D%20b)
Let the least possible value of the smallest of 99 cosecutive integers be x and let the number whose cube is the sum be p, then
![\frac{99}{2} (2x+98)=p^3 \\ \\ 99x+4,851=p^3\\ \\ \Rightarrow x=\frac{p^3-4,851}{99}](https://tex.z-dn.net/?f=%20%5Cfrac%7B99%7D%7B2%7D%20%282x%2B98%29%3Dp%5E3%20%5C%5C%20%20%5C%5C%2099x%2B4%2C851%3Dp%5E3%5C%5C%20%5C%5C%20%5CRightarrow%20x%3D%5Cfrac%7Bp%5E3-4%2C851%7D%7B99%7D)
By substitution, we have that
![p=33](https://tex.z-dn.net/?f=p%3D33)
and
![x=314](https://tex.z-dn.net/?f=x%3D314)
.
Therefore, <span>the least possible value of the smallest of 99 consecutive positive integers whose sum is a perfect cube is 314.</span>
Answer:
89
Step-by-step explanation:
92 = (90 + 98 + 96+ 94 + 85 + x )/6
92*6 = 90 + 98 + 96+ 94 + 85 + x
552 - (90 + 98 + 96+ 94 + 85) = x
x = 89
Answer: 5x + 2
Step-by-step explanation:
First covert the feet to meters.
1 meter = 3.3 feet.
Divide the total number of feet by 3.3 to get total number of meters:
198 / 3.3 = 60 meters per second.
Multiply meters per second by 15 seconds:
60 x 15 = 900 meters in 15 seconds.