Answer:
Velocity, v = 0.239 m/s
Explanation:
Given that,
The distance between two consecutive nodes of a standing wave is 20.9 cm = 0.209 m
The hand generating the pulses moves up and down through a complete cycle 2.57 times every 4.47 s.
For a standing wave, the distance between two consecutive nodes is equal to half of the wavelength.

Frequency is number of cycles per unit time.

Now we can find the velocity of the wave.
Velocity = frequency × wavelength
v = 0.574 × 0.418
v = 0.239 m/s
So, the velocity of the wave is 0.239 m/s.
Answer:
If there is any sheets or padded material in this room you can cover the window, you could turn off all the lights if there is a light switch in the room, you could try to bring a bright flashlight in and shine it into the other room(try to annoy the person watching you so they leave), act really boring and hopefully make the other person lose interest.
Explanation:
(hint) If you actually get in a situation like this place your fingernail against the mirror or glass you think could possibly be a one-way mirror. If there's a gap between your nail and the mirror, it's most likely a genuine mirror :)
Answer:


Explanation:
v = Final velocity
u = Initial velocity
a = Acceleration
t = Time
s = Displacement
Here the kinematic equations of motion are used

Time the car is at constant velocity is 39 s
Time the car is decelerating is 5 s
Total time the car is in motion is 
Distance traveled




The total displacement of the car is 
Average velocity is given by

The average velocity of the car is
.
Medical movement for disabilities people
Weathering and rock slides