Answer:
44 grams of CO₂ will be formed.
Explanation:
The balanced reaction is:
C + O₂ → CO₂
By reaction stoichiometry (that is, the relationship between the amount of reagents and products in a chemical reaction), the following amounts of each compound participate in the reaction:
- C: 1 mole
- O₂: 1 mole
- CO₂: 1 mole
Being the molar mass of each compound:
- C: 12 g/mole
- O₂: 32 g/mole
- CO₂: 44 g/mole
By stoichiometry the following mass quantities participate in the reaction:
- C: 1 mole* 12 g/mole= 12 g
- O₂: 1 mole* 32 g/mole= 32 g
- CO₂: 1 mole* 44 g/mole= 44 g
The limiting reagent is one that is consumed first in its entirety, determining the amount of product in the reaction. When the limiting reagent is finished, the chemical reaction will stop.
If 12 grams of C react, by stoichiometry 32 grams of O₂ react. But you have 40 grams of O₂. Since more mass of O₂ is available than is necessary to react with 12 grams of C, carbon C is the limiting reagent.
Then by stoichiometry of the reaction, you can see that 12 grams of C form 44 grams of CO₂.
<u><em>44 grams of CO₂ will be formed.</em></u>
Answer:
Melting of ice
Explanation:
A physical change is one in which just the physical properties of the matter is altered. Most phase changes reaction falls under this type of change.
- Examples are boiling, melting, freezing, condensation, sublimation, magnetization of metals, breaking glass, cutting wood.
- No new kinds of matter is formed.
- The process is reversible
- No change in mass
Answer : The reaction is endothermic.
Explanation :
Formula used :

where,
= change in temperature = 
Q = heat involved in the dissolution of KCl = ?
m = mass = 0.500 + 50.0 = 50.5 g
c = specific heat of resulting solution = 
Now put all the given value in the above formula, we get:


The heat involved in the dissolution of KCl is positive that means as the change in temperature decreases then the reaction is endothermic and as the change in temperature increases then the reaction is exothermic.
Hence, the reaction is endothermic.
[H+] in first brand:
4.5 = -log([H+])
[H+] = 10^(-4.5)
[H+] in second brand:
5 = -log[H+]
[H+] = 10^(-5)
Difference = 10^(-4.5) - 10^(-5)
= 2.2 x 10⁻⁵
The answer is A.