1.8 L
<h3>
Explanation</h3>
The volume of a gas, V, is inversely proportional to the pressure on it, P. That is:
V₁ · T₁ = V₂ · T₂.
Rearranging gives:
V₂ = V₁ · T₁ / T₂ = 4.2 × (101 / 235) = 1.8 L
Resonance, leaving group, carbonyl carbon delta+, and steric effect is the most crucial variables that affect the relative reactivity of a functional group containing a carbonyl in an addition or substitution process.
Discussion:
1. Carbonyl Carbon Delta+: The carbonyl group becomes more electrophilic and accelerates nucleophilic assault when the carbonyl carbon delta+ is bigger.
2. Resonance: When the carbonyl is transformed into the tetrahedral adduct, it may be lost. Loss of resonance increases the energy of the transition state for this nucleophilic assault because resonance has the function of stabilizing. Therefore, a carbonyl functional group's resistance to nucleophilic attack increases as resonance in the group increases in importance.
3. Leaving group: Tetrahedral adduct fragmentation is encouraged by a better LG.
4. Steric effects: The nucleophilic attack on carbonyl carbon is delayed when sterically impeded.
Learn more about carbonyl here:
brainly.com/question/21440134
#SPJ4
Hey there!:
density = 3.51 g/cm³
Volume = 0.0270 cm³
Therefore:
D = m / V
3.51 = m / 0.0270
m = 3.51 * 0.0270
m = 0.09477 g
Answer:
The answer is the respiratory system
Explanation:
The function of the respiratory system is to move two gases. These two gases are called oxygen and carbon dioxide. Gas exchange takes place in the millions of alveoli in the lungs and the capillaries that envelop them.
M1m1 = M2m2
where M1 is the concentration of the stock solution, m1 is the
mass of the stock solution, M2 is the concentration of the new solution and
m2 is its new mass.
M1m1 = M2m2
.925(m1) = .35(250)
m1 = 94.59 g