1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
schepotkina [342]
3 years ago
14

Steam enters a turbine steadily at 7 MPa and 600°C with a velocity of 60 m/s and leaves at 25 kPa with a quality of 95 percent.

A heat loss of 20 kJ/kg occurs during the process. The inlet area of the turbine is 150 cm2, and the exit area is 1400 cm2. Determine (a) the mass flow rate of the steam, (b) the exit velocity, and (c) the power output.
Engineering
1 answer:
Rufina [12.5K]3 years ago
6 0

Answer:

a) \dot m = 16.168\,\frac{kg}{s}, b) v_{out} = 680.590\,\frac{m}{s}, c) \dot W_{out} = 18276.307\,kW

Explanation:

A turbine is a steady-state devices which transforms fluid energy into mechanical energy and is modelled after the Principle of Mass Conservation and First Law of Thermodynamics, whose expressions are described hereafter:

Mass Balance

\frac{v_{in}\cdot A_{in}}{\nu_{in}} - \frac{v_{out}\cdot A_{out}}{\nu_{out}} = 0

Energy Balance

-q_{loss} - w_{out} + h_{in} - h_{out} = 0

Specific volumes and enthalpies are obtained from property tables for steam:

Inlet (Superheated Steam)

\nu_{in} = 0.055665\,\frac{m^{3}}{kg}

h_{in} = 3650.6\,\frac{kJ}{kg}

Outlet (Liquid-Vapor Mix)

\nu_{out} = 5.89328\,\frac{m^{3}}{kg}

h_{out} = 2500.2\,\frac{kJ}{kg}

a) The mass flow rate of the steam is:

\dot m = \frac{v_{in}\cdot A_{in}}{\nu_{in}}

\dot m = \frac{\left(60\,\frac{m}{s} \right)\cdot (0.015\,m^{2})}{0.055665\,\frac{m^{3}}{kg} }

\dot m = 16.168\,\frac{kg}{s}

b) The exit velocity of steam is:

\dot m = \frac{v_{out}\cdot A_{out}}{\nu_{out}}

v_{out} = \frac{\dot m \cdot \nu_{out}}{A_{out}}

v_{out} = \frac{\left(16.168\,\frac{kg}{s} \right)\cdot \left(5.89328\,\frac{m^{3}}{kg} \right)}{0.14\,m^{2}}

v_{out} = 680.590\,\frac{m}{s}

c) The power output of the steam turbine is:

\dot W_{out} = \dot m \cdot (-q_{loss} + h_{in}-h_{out})

\dot W_{out} = \left(16.168\,\frac{kg}{s} \right)\cdot \left(-20\,\frac{kJ}{kg} + 3650.6\,\frac{kJ}{kg} - 2500.2\,\frac{kJ}{kg}\right)

\dot W_{out} = 18276.307\,kW

You might be interested in
Which of the following statements about pitot-static systems is FALSE? a). A pitot probe measures the Total Pressure of the free
Pavlova-9 [17]

Answer:

C

Explanation:

Pitot tube:

  Pitot tube is a device which is used to measure the velocity of flow by measuring pressure difference between the points.

As we know that stagnation pressure is the summation of dynamic and static pressure.

Stagnation pressure = Static pressure + Dynamic pressure

So

Dynamic pressure  = Stagnation pressure -  Static pressure

We know that dynamic pressure

P_{dynamic}=\dfrac{\rho V^2}{2}

On the other hand Pitot tube measure the dynamic pressure.

So option C is correct.

5 0
3 years ago
An isentropic steam turbine processes 2 kg/s of steam at 3 MPa, which is exhausted at50 kPa and 100C. Five percent of this flow
borishaifa [10]

Answer:

2285kw

Explanation:

since it is an isentropic process, we can conclude that it is a reversible adiabatic process. Hence the energy must be conserve i.e the total inflow of energy must be equal to the total outflow of energy.

Mathematically,

\\ E_{inflow} = E_{outflow}

Note: from the question we have only one source of inflow and two source of outflow (the exhaust at a pressure of 50kpa and the feedwater at a pressure of 5ookpa). Also the power produce is another source of outgoing energy    \\ E_{inflow} = m_{1} h_{1} .

\\

E_{outflow} = m_{2} h_{2} + m_{3} h_{3} + W_{out}

\\

Where m_{1} h_{1} are the mass flow rate and the enthalpies at the inlet  at a pressure of 3Mpa \\,

m_{2} h_{2} are the mass flow rate and the enthalpies  at the outlet 2 where we have a pressure of 500kpa respectively.\\,

and  m_{3} h_{3}   are the mass flow rate and the enthalpies  at the outlet 3 where we have a pressure of 50kpa respectively.\\,

We can now express write out the required equation by substituting the new expression for the energies \\

m_{1} h_{1} = m_{2} h_{2} + m_{3} h_{3} + W_{out}   \\

from the above equation, the unknown are the enthalpy values and  the mass flow rate. \\

first let us determine the enthalpy values at the inlet and the out let using the Superheated water table.  \\

It is more convenient to start from outlet 3 were we have a temperature 100^{0}C and pressure value of (50kpa or 0.05Mpa ). using double interpolation method  on the superheated water table to determine the enthalpy value with careful calculation we have  \\

h_{3}  = 2682.4 KJ/KG , at this point also from the table the entropy value ,s_{3} value is 7.6953 KJ/Kg.K. \\

Next we determine the enthalphy value at outlet 2. But in this case, we don't have a temperature value, hence we use the entrophy value since the entropy  is constant at all inlet and outlet. \\

So, from the superheated water table again, at a pressure of 500kpa (0.5Mpa) and entropy value of  7.6953 KJ/Kg.K with careful  interpolation we arrive at a enthalpy value of 3206.5KJ/Kg.\\

Finally for inlet one at a pressure of 3Mpa, interpolting with an entropy value of 7.6953KJ/Kg.K  we arrive at enthalpy value of 3851.2KJ/Kg. \\

Now we determine the mass flow rate at each inlet and outlet. since  mass must also be balance, i.e  m_{1} = m_{2} + m_{3} \\

From the question the, the mass flow rate at the inlet m_{1}}  is 2Kg/s \\

Since 5% flow is delivered into the feedwater heating,  \\

m_{2} = 0.05m_{1} = 0.05 *2kg/s = 0.1kg/s \\

Also for the outlet 3 the remaining 95% will flow out. Hence

m_{3} = 0.95m_{1} = 0.95 *2kg/s = 1.9kg/s \\

Now, from m_{1} h_{1} = m_{2} h_{2} + m_{3} h_{3} + W_{out}   \\ we substitute values

W_{out} = m_{1} h_{1}-m_{2} h_{2}-m_{3} h_{3}

W_{out} = (2kg/s)(3851.2KJ/Kg) - (0.1kg/s)(3206.5kJ/kg)- (1.9)(2682.4kJ/kg)

\\

W_{out} = 2285.19 kW.

Hence the power produced is 2285kW

7 0
3 years ago
Question 8 of 10
Varvara68 [4.7K]
Gtfggyfbkuvjhkbghvfycuyivty
6 0
3 years ago
How are radio waves carried?
bagirrra123 [75]

Answer:

c from transmitter to a receiver

6 0
4 years ago
Read 2 more answers
What is the least common denominator for the fractions 16and34?
mihalych1998 [28]

Answer:

272

Explanation:

3 0
3 years ago
Read 2 more answers
Other questions:
  • What software do you sue for design and the rapid prototyping machine?
    11·1 answer
  • An equal-tangent vertical curve is to be constructed between grades of -2% (initial) and 1% (final). The PVI is at station 110 0
    9·1 answer
  • Technician A says that weld-through primer can be removed from the immediate weld area to improve weld quality. Technician B say
    7·1 answer
  • An electric winch operates on 140 volts​ [V] and draws 6 amperes​ [A] of current. The winch has an efficiency of 64​%. The winch
    6·1 answer
  • The flowrate through a rectangular channel is 20 cfs. The upstream width of the channel is 10 ft, and the depth of the water in
    9·1 answer
  • Mining is an example of this type of business
    7·1 answer
  • Rehoboam reigned in Jerusalem over the tribes of
    9·1 answer
  • What would the answer be to this question?
    8·2 answers
  • What is the answer???
    10·1 answer
  • Technician A says that the connecting rod and main bearing caps should be marked before removing to ensure that they can be inst
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!