1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Brilliant_brown [7]
3 years ago
15

Which of the following justifies the need for an already-certified engineer to continue to take classes?

Engineering
1 answer:
tatiyna3 years ago
3 0
What are the answer choices?
Without the choices, I’d say so that they can further progress their engineering education. New technologies and new mechanical advancements are always coming out so it would be beneficial for the engineer to keep up to date by taking classes.
You might be interested in
A pitfall cited in Section 1.10 is expecting to improve the overall performance of a computer by improving only one aspect of th
Oxana [17]

Answer:

a) For this case the new time to run the FP operation would be reduced 20% so that means 100-20% =80% from the original time

(1-0.2)*70 s =56s

The reduction on this case is 70-56 s=14s

And since the new total time would be given by 250-14=236 s

b) For this case the total time is reduced 20%  so that means that the new total time would be (1-0.2)=0.8 times the original total time (1-0.2) *250s =200 s

The original time for INT operations is calculated as:

250 = 70+85+40 +t_{INT}

t_{INT}=55s

For this part the only time that was changed is assumed the INT operations so then:

200 = 70+85+40 \Delta t_{INT}

And then: \Delta t_{INT}= 200-70-85-40=5 s

c) A reduction of the total time implies that the total time would be 205 s from the results above. And the time for FP is 70, for L/S is 85 and for INT operations is 55 s, so then if we add 70+85+55=210s, we see that 210>205 so then we cannot reduce the total time 20% just reducing the branch intructions.

Explanation:

From the info given we know that a computer running a program that requires 250 s, with 70 s spent executing FP instructions, 85 s executed L/S instructions and 40 s spent executing branch instructions.

Part 1

For this case the new time to run the FP operation would be reduced 20% so that means 100-20% =80% from the original time

(1-0.2)*70 s =56s

The reduction on this case is 70-56 s=14s

And since the new total time would be given by 250-14=236 s

Part 2

For this case the total time is reduced 20%  so that means that the new total time would be (1-0.2)=0.8 times the original total time (1-0.2) *250s =200 s

The original time for INT operations is calculated as:

250 = 70+85+40 +t_{INT}

t_{INT}=55s

For this part the only time that was changed is assumed the INT operations so then:

200 = 70+85+40 \Delta t_{INT}

And then: \Delta t_{INT}= 200-70-85-40=5 s

And we can quantify the decrease using the relative change:

\% Change = \frac{5s}{55 s} *100 = 9.09\% of reduction

Part 3

A reduction of the total time implies that the total time would be 205 s from the results above. And the time for FP is 70, for L/S is 85 and for INT operations is 55 s, so then if we add 70+85+55=210s, we see that 210>205 so then we cannot reduce the total time 20% just reducing the branch intructions.

8 0
3 years ago
In software engineering how do you apply design for change?
Pavlova-9 [17]

Answer:

it is reducely very iloretable chance for a software engineer to give an end to this question

7 0
3 years ago
Which of the following ranges depicts the 2% tolerance range to the full 9 digits provided?
Lyrx [107]

Answer:

the only one that meets the requirements is option C .

Explanation:

The tolerance of a quantity is the maximum limit of variation allowed for that quantity.

To find it we must have the value of the magnitude, its closest value is the average value, this value can be given or if it is not known it is calculated with the formula

         x_average = ∑ x_{i} / n

The tolerance or error is the current value over the mean value per 100

         Δx₁ = x₁ / x_average

         tolerance = | 100 -Δx₁  100 |

bars indicate absolute value

let's look for these values ​​for each case

a)

    x_average = (2.1700000+ 2.258571429) / 2

    x_average = 2.2142857145

fluctuation for x₁

        Δx₁ = 2.17000 / 2.2142857145

        Tolerance = 100 - 97.999999991

        Tolerance = 2.000000001%

fluctuation x₂

        Δx₂ = 2.258571429 / 2.2142857145

        Δx2 = 1.02

        tolerance = 100 - 102.000000009

        tolerance 2.000000001%

b)

    x_average = (2.2 + 2.29) / 2

    x_average = 2,245

fluctuation x₁

         Δx₁ = 2.2 / 2.245

         Δx₁ = 0.9799554

         tolerance = 100 - 97,999

         Tolerance = 2.00446%

fluctuation x₂

          Δx₂ = 2.29 / 2.245

          Δx₂ = 1.0200445

          Tolerance = 2.00445%

c)

   x_average = (2.211445 +2.3) / 2

   x_average = 2.2557225

       Δx₁ = 2.211445 / 2.2557225 = 0.9803710

       tolerance = 100 - 98.0371

       tolerance = 1.96%

       Δx₂ = 2.3 / 2.2557225 = 1.024624

       tolerance = 100 -101.962896

       tolerance = 1.96%

d)

   x_average = (2.20144927 + 2.29130435) / 2

   x_average = 2.24637681

       Δx₁ = 2.20144927 / 2.24637681 = 0.98000043

       tolerance = 100 - 98.000043

       tolerance = 2.000002%

       Δx₂ = 2.29130435 / 2.24637681 = 1.0200000017

       tolerance = 2.0000002%

e)

   x_average = (2 +2,3) / 2

   x_average = 2.15

   Δx₁ = 2 / 2.15 = 0.93023

   tolerance = 100 -93.023

   tolerance = 6.98%

   Δx₂ = 2.3 / 2.15 = 1.0698

   tolerance = 6.97%

Let's analyze these results, the result E is clearly not in the requested tolerance range, the other values ​​may be within the desired tolerance range depending on the required precision, for the high precision of this exercise the only one that meets the requirements is option C .

4 0
3 years ago
How much does It cost to make a tracking chip
Basile [38]

Answer:

about 4 grand

Explanation:

6 0
2 years ago
The settlement of foundations is typically the result of three separate occurrences that take place in the soil which provides s
evablogger [386]

Answer:

The differences are listed below

Explanation:

The differences between consolidation and compaction are as follows:

In compaction the mechanical pressure is used to compress the soil. In consolidation, there is an application of stead pressure.

In compaction, there is a dynamic load by rapid mechanical methods like tamping, rolling, etc. In consolidation, there is static and sustained pressure applied for a long time.

In compaction, the soil volume is reduced by removing air from the void. In consolidation, the soil volume is reduced by squeezing out water from the pores.

Compaction is used for sandy soil, consolidation on the other hand, is used for clay soil.

7 0
3 years ago
Read 2 more answers
Other questions:
  • A 2.2-kg model rocket is launched vertically and reaches an altitude of 70 m with a speed of 30 m/s at the end of powered flight
    5·1 answer
  • A part has been tested to have Sut = 530 MPa, f = 0.9, and a fully corrected Se = 210 MPa. The design requirements call for the
    10·1 answer
  • One kilogram of water contained in a piston–cylinder assembly, initially saturated vapor at 460 kPa, is condensed at constant pr
    15·1 answer
  • What is your employer required to have on fixed ladders that extend more than 24 feet in the workplace?
    15·2 answers
  • Consider two different types of motors. Motor A has a characteristic life of 4100 hours (based on a MTTF of 4650 hours) and a sh
    10·1 answer
  • Do you think the mining process is faster when you know in advance that the land must be restored? Explain.
    14·1 answer
  • A 3-m wide rectangular channel has a flow velocity of 1.8 m/s when the depth of flow is 1.2 m. what will be the flow velocity wh
    14·1 answer
  • Ammonia in a piston–cylinder assembly undergoes two processes in series. At the initial state, p1 = 120 lbf/in.2 and the quality
    15·1 answer
  • The branding, packaging, and labeling of your product should accomplish all of the following except
    12·1 answer
  • Sawzall® is another term commonly applied to?
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!