Answer:
see below
Explanation:
acceleration = Δv /Δt
for this situation 60 / 10 = 6 m/s^2
B) vf = vo + at
vf = 0 + 6(3) =<u> 18 m/s after 3 seconds </u>
<u />
C) vf = at
60 = 6 ( t) t = 10 seconds ( actually, this was given)
d = 1/2 a t^2
= 1/2 (6) (10)^2 = <u>300 m </u>
<u />
<u>We are given:</u>
Initial velocity (u) = 32 m/s
Acceleration (a) = 3 m/s²
Displacement (s) = 40 m
Final Velocity (v) = v m/s
<u>Solving for the Final Velocity:</u>
from the third equation of motion:
v² - u² = 2as
<em>replacing the variables</em>
v² - (32)² = 2(3)(40)
v² = 240 + 1024
v² = 1264
v = √1264
v = 35.5 m/s
Therefore, the velocity of the bike after travelling 40 m is 35.5 m/s
The amount of energy is ALWAYS conserved based on the law of conservation of energy. Therefore, the amount of energy will remain the same.
Answer:
Potential Difference = 14 V
Explanation:
We are told that when the capacitor plates are charged to a certain voltage, then we have;
ΔV = 14 volts
Now, the battery is disconnected, so here we have the potential difference between the plates to be given by the formula;
ΔV = Q/C
Now, the charge is conserved on the plates and the capacitance is constant, therefore in this case, the potential difference will remain the same.
Thus;
Potential Difference = 14 V