Answer:
A spring whose spring constant is 200 lbf/in has an initial force of 100 lbf acting on it. Determine the work, in Btu, required to compress it another 1 inch.
Step 1 of 4
The force at any point during the deflection of the spring is given by,
where is the initial force
and x is the deflection as measured from the point where the initial force occurred.
The work required to compress the spring is
Therefore work required to compress the spring is
The work required to compress the spring in Btu is calculated by
Where 1Btu =778
The work required to compress the spring,
eman Asked on February 19, 2018 in thermal fluid Sciences 4th solutions.
Explanation:
Answer:
8
Explanation:
(8√2)² = x² + x²
8² × √2² = 2x²
64 × 2 = 2x²
128 = 2x²
64 = x²
x = 8
give me brainliest please
1) The wavelength of the radiation emitted by the human skin is

the frequency of the radiation is related to the wavelength by

where

is the speed of light. Plugging numbers into the formula, we find the frequency of the radiation:

2) The frequency of this radiation is 313 GHz, and its wavelength

. If we look at the table of the electromagnetic spectrum
https://en.wikipedia.org/wiki/Electromagnetic_spectrum
We see that we are in the range of visible light (in particular, in the infrared range).
Therefore, the correct answer is <span>2. visible light .</span>
Answer:
centimeters
Explanation:
earth's plates move only a few centimeters per year.