The angular speed is decreasing and direction of rotation clockwise of the rod immediately after time t.
<h3>
</h3><h3>What is angular speed ?</h3>
The rate of change of angular displacement is defined as angular speed. It is stated as follows:
ω = θ t
Where,
θ is the angle of rotation,
t is the time
ω is the angular velocity
The torque is found as;l

If the force is acting on the rod from the three point is the same, the value of the torque is depends upon the radius or the perpendicular distance.
The perpendicular distance of the right force is grater. Hence, the force acting on the right side is more, and the rod will rotate clockwise.
Both the forces are acting downwards. Thus, the resultant force is the less due to which the speed is increasing.
Hence, the angular speed is decreasing and direction of rotation clockwise of the rod immediately after time t.
To learn more about the angular speed, refer to the link;
brainly.com/question/9684874
#SPJ1
Answer:
i = 0.3326 L
Explanation:
A fixed string at both ends presents a phenomenon of standing waves, two waves with the same frequency that are added together. The expression to describe these waves is
2 L = n λ n = 1, 2, 3…
The first harmonic or leather for n = 1
Wave speed is related to wavelength and frequency
v = λ f
λ = v / f
Let's replace in the first equation
2 L = 1 (v / f₁)
For the shortest length L = L-l
2 (L- l) = 1 (v / f₂)
These two equations form our equation system, let's eliminate v
v = 2L f₁
v = 2 (L-l) f₂
2L f₁ = 2 (L-l) f₂
L- l = L f₁ / f₂
l = L - L f₁ / f₂
l = L (1- f₁ / f₂)
.
Let's calculate
l / L = (1- 309/463)
i / L = 0.3326
For this, you need the v-squared equation, which is v(final)² = v(initial)² + 2aΔx
The averate acceleration is thus a = (v(final)² - v(initial)²) / 2Δx = (20² - 15²) / 2(50) = 175 / 100 = 1.75 m/s²
So the average acceleration is 1.75 m/s²
Answer:60 ohms
Explanation:
R1=30 ohms
R2=15 ohms
R3=15 ohms
Let the total resistance be R
R=R1 + R2 + R3
R=30 + 15 +15
R=60
Total resistance is 60 ohms
When a satellite is revolving into the orbit around a planet then we can say
net centripetal force on the satellite is due to gravitational attraction force of the planet, so we will have


now we can say that kinetic energy of satellite is given as


also we know that since satellite is in gravitational field of the planet so here it must have some gravitational potential energy in it
so we will have

so we can say that energy from the fuel is converted into kinetic energy and gravitational potential energy of the satellite