Answer:
The friction force is 250 N
Explanation:
The desk is moving at constant velocity. This means that its acceleration is zero: a = 0. Newton's second law states that the resultant of the forces acting on the desk is equal to the product between mass (m) and acceleration (a):

In this case, we know that the acceleration is zero: a = 0, so also the resultant of the forces must be zero:
(1)
We are only interested in the forces acting along the horizontal direction, since it is the direction of motion. There are two forces acting in this direction:
- the pull, forward, F = 250 N
- the friction force, backward, 
Given (1), we have

So the force of friction must be equal to the pull:

Answer:
Density =mass/volume 20/10=2
Explanation:
Graph A matches description 4 because the car is coming back.
Graph B matches description 3 because the speed of the car is decreasing.
Graph C matches the description 2 because the car is traveling at a constant rate.
Graph D matches the description 1 because the car is stopped.
Answer:
a. 4.9 m
Explanation:
To solve this problem we must take into account that power is defined as the relationship between the work and the time in which the work is done.
P = W/t
where:
P = power = 95 [W] (units of watts)
W = work [J] (units of Joules)
t = time = 6.2 [s]
We can clear the work from the previous equation.
W = P*t
W = 95*6.2 = 589 [J]
Now we know that the work is defined by the product of the force by the distance, therefore we can express the work done with the following equation.
W = F*d
where:
F = force = 120 [N] (units of Newtons)
d = distance [m]
d = W/F
d = 589/120
d = 4.9 [m]