Answer:
Explanation:
During a car collision momentum of vehicle ceases within a fraction of seconds so Force due to the impulse is huge.
Impulse is defined as the product of average force and time. If we can increase the period of collision for the same impulse then the average force imparted will be less.
If we can increase the time period then damage due to collision will be less.
There's a very subtle thing going on here, one that could blow your mind.
Wherever we look in the universe, no matter what direction we look,
we see the light from distant galaxies arriving at our telescopes with
longer wavelengths than the light SHOULD have.
The only way we know of right now that can cause light waves to get
longer after they leave the source is motion of the source away from
the observer. The lengthening of the waves on account of that motion
is called the Doppler effect. (The answer to the question is choice-c.)
But that may not be the only way that light waves can get stretched. It's
the only way we know of so far, and so we say that the distant galaxies
are all moving away from us.
From that, we say the whole universe is expanding, and that right there is
one of the strongest observations that we explain with the Big Bang theory
of creation.
Now: If ... say tomorrow ... a competent Physicist discovers another way
for light waves to get stretched after they leave the source, then the whole
"expanding universe" idea is out the window, and probably the Big Bang
theory along with it !
Now that our mind has been blown, come back down to Earth with me,
and I'll give you something else to think about:
It's true that when we look at distant galaxies, we do see their light
arriving in our telescopes with longer wavelengths than it should have.
And then we use the Doppler effect to calculate how fast that galaxy
is moving away from us. That's all true. Astronomers are doing it
every day. I mean every night.
So here's the question for you to think about ... maybe even READ about:
When the light from a distant galaxy pours into our telescope, and we
look at it, and we measure its wavelength, and we find that the wavelength
is longer than it should be ... how do we know what it should be ? ? ?
Answer:
When an electric field exists in a conductor a current will flow.
This implies a voltage difference between two points on the conductor.
Electrostatics pertains to static charge distributions.
That means that an object such as a charged spherical conductor will be at the same potential (voltage) on both its outer and inner surfaces.
The free-body diagram of the forces acting on the flag is in the picture in attachment.
We have: the weight, downward, with magnitude

the force of the wind F, acting horizontally, with intensity

and the tension T of the rope. To write the conditions of equilibrium, we must decompose T on both x- and y-axis (x-axis is taken horizontally whil y-axis is taken vertically):


By dividing the second equation by the first one, we get

From which we find

which is the angle of the rope with respect to the horizontal.
By replacing this value into the first equation, we can also find the tension of the rope:
The answer is C voltmeter