Answer:
Steven has to row at a speed to reach the same horizontal spot at the other side of the river is, V = 6 m/s
Explanation:
Given data,
The river flowing south at the rate, v = 3 m/s
To reach the other side directly across the river, he aims the raft, Ф = 30°
The speed of his raft across the river is given by the formula,
V = v / Sin Ф
= 3 / Sin 30°
= 6 m/s
Steven has to row at a speed to reach the same horizontal spot at the other side of the river is, V = 6 m/s
They dont work because you crushed them duh
I think the answer is b.boom
The correct answer is C) towards the center of the circle.
Although the object is moving at a constant speed it is constantly accelerating due to the constant change in direction as it describes the circular path. This causes a constant change in velocity as velocity is a vector quantity.
For the object to maintain the circular path there has to be centripetal force acting on the object and this centripetal force is directed towards the center of the circle.
Answer:
new atmospheric pressure is 0.9838 ×
Pa
Explanation:
given data
height = 21.6 mm = 0.0216 m
Normal atmospheric pressure = 1.013 ✕ 10^5 Pa
density of mercury = 13.6 g/cm³
to find out
atmospheric pressure
solution
we find first height of mercury when normal pressure that is
pressure p = ρ×g×h
put here value
1.013 ×
= 13.6 × 10³ × 9.81 × h
h = 0.759 m
so change in height Δh = 0.759 - 0.0216
new height H = 0.7374 m
so new pressure = ρ×g×H
put here value
new pressure = 13.6 × 10³ × 9.81 × 0.7374
atmospheric pressure = 98380.9584
so new atmospheric pressure is 0.9838 ×
Pa