Answer:
Angular momentum is conserved if there are no external forces
P1 = P2
I1 ω1 = I2 ω2
ω2 / ω1 = I1 / I2
If the skater pulls their arms in (I2 < I1) then the angular speed must increase for angular momentum to be conserved.
Answer:
When equal and opposite forces meet each other, it results in motion and they would repel away from each other, causing the asteroid to be sent away from the earth.
Explanation:
Newton's Third Law states that every action has an equal and opposite reaction.
The relationship between force and extension is a linear one, which means that if you plot a force vs. extension graph, you'll get a straight line. It will pass through the origin (x = 0; F = 0), and its slope will be equal to the spring constant, k.
Measure the Slope of the Force Extension Graph
In general, you can find the slope of a line by choosing two points and forming a ratio of the rise and the run between these two points. If the first point you choose is (x1, F1), and the second point is (x2, F2), the slope of the line is:
slope= f(2)- f(1)
---------
x(2)-x(1)
Assuming F2 is larger than F1.
This is the value of the spring constant, k. Despite the minus sign in the Hooke's law equation, k is a positive number, because the slope in the Hooke's law graph is positive.
Note that the spring constant has units of force/distance. In the MKS system, the spring constant units are newtons/meter. In the CGS system, they are dynes/centimeter. In the imperial system, they are pounds of force (lbf) /foot.
Now that you have the spring constant, you can predict exactly how much the spring will distend or compress when you subject it to any force.
You have to figure it out
Answer:
I think false I don't know if I right but I hoped this help