1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
sashaice [31]
3 years ago
10

A moving electron passes near the nucleus of a gold atom, which contains 79 protons and 118 neutrons. At a particular moment the

electron is a distance of 7.5 × 10−9 m from the gold nucleus. (a) What is the magnitude of the electric force exerted by the gold nucleus on the electron?
Physics
1 answer:
Alex17521 [72]3 years ago
3 0

Answer:

F=3.2345*10^{-10}N

Explanation:

Given data

Distance r=7.5×10⁻⁹m

Charge of electron -e= -1.6×10⁻¹⁹C

Charge of proton e=1.6×10⁻¹⁹C

To find

Electric force F

Solution

From Coulombs law we know that:

F=K\frac{q_{1}q_{2} }{r^{2} }

q₁ is charge of electron

q₂ is the charge of gold nucleus which contains 79 positively charge protons and 118 neutral neutrons.  

The Charge of single proton e=1.6×10⁻¹⁹C

79 proton charge q₂=79×1.6×10⁻¹⁹=1.264×10⁻¹⁷C

So

F=\frac{1}{4\pi *8.85*10^{-12} } \frac{-1.6*10^{-19}*1.264*10^{-17}}{(7.5*10^{-9})^{2} }\\ F=3.2345*10^{-10}N

You might be interested in
A proton is released from rest at the positive plate of a parallelplatecapacitor. It crosses the capacitor and reaches the negat
Triss [41]

Answer:

2.1406 ×10^6 m/sec

Explanation:

we know that energy is always conserved

so from the law of energy conservation

qV=\frac{1}{2}mv^2

here V is the potential difference  

we know that mass of proton = 1.67×10^{-27} kg

we have given speed =50000m/sec

so potential difference V=\frac{\frac{1}{2}\times 1.67\times 10^{-27}50000^2}{1.6\times 10^{-19}}=13.045

now mass of electron =9.11×10^{-31}

so for electron

\frac{1}{2}\times 9.11\times 10^{-31}v^2=1.6\times 10^{-19}\times 13.045=2.1406\times 10^6 m/sec

so the velocity of electron will be 2.1406×10^6 m/sec

4 0
3 years ago
What mass of ice (in g) can be melted if 27.2 kJ of thermal energy are added at the freezing point? Use molar mass = 18.02 g/mol
san4es73 [151]

Answer : The mass of ice melted can be, 3.98 grams.

Explanation :

First we have to calculate the moles of ice.

Q=\frac{\Delta H}{n}

where,

Q = energy absorbed = 27.2 kJ

\Delta H = enthalpy of fusion of ice = 6.01 kJ/mol

n = moles = ?

Now put all the given values in the above expression, we get:

27.2kJ=\frac{6.01kJ/mol}{n}

n=0.221mol

Now we have to calculate the mass of ice.

\text{Mass of ice}=\text{Moles of ice}\times \text{Molar mass of ice}

Molar mass of ice = 18.02 g/mol

\text{Mass of ice}=0.221mol\times 18.02g/mol=3.98g

Thus, the mass of ice melted can be, 3.98 grams.

3 0
3 years ago
The phases of the moon occur because the moon revolves around the earth.<br><br> True<br><br> False
Ira Lisetskai [31]

Answer: True

Explanation:
The phases occur because the sun lights different parts of the moon as the moon revolves around the earth
7 0
3 years ago
A single-slit diffraction pattern is formed by monochromatic electromagnetic radiation from a distant source passing through a s
tatiyna

Answer:

a. λ = 647.2 nm

b. I₀  9.36 x 10⁻⁵

Explanation:

Given:

β = 56.0 rad , θ = 3.09 ° , γ = 0.170 mm = 0.170 x 10⁻³ m

a.

The wavelength of the radiation can be find using

β = 2 π / γ * sin θ

λ = [ 2π * γ * sin θ ] / β

λ = [ 2π * 0.107 x 10⁻³m * sin (3.09°) ] / 56.0 rad

λ = 647.14 x 10⁻⁹ m  ⇒  λ = 647.2 nm

b.

The intensity of the central maximum I₀

I = I₀ (4 / β² ) * sin ( β / 2)²

I = I₀ (4 / 56.0²) * [ sin (56.0 /2) ]²

I = I₀  9.36 x 10⁻⁵

8 0
3 years ago
Two people push on the same door from opposite sides as shown.
tangare [24]
The correct answer is
<span>c. one person exerts more force than the other so that the forces are unbalanced.

In fact, the door is initially at rest. In order to move the door, a net force different from zero should be applied, according to Newton's second law:
</span>\sum F = ma
<span>where the term on the left is the resultant of the forces acting on the door, m is the door mass and a its acceleration.

In order to move the door, the acceleration must be different from zero. But this means that the resultant of the forces acting on it must be different from zero: this is possible only if  the forces applied by the two persons are unbalanced, i.e. one person exerts more force than the other.</span>
3 0
2 years ago
Read 2 more answers
Other questions:
  • A parcel of air is being forced up the windward side of a 7,000-foot-high mountain. The parcel has a temperature of 91.0°F at 0
    10·1 answer
  • Which are standard functions that families are responsible for providing?
    12·2 answers
  • The Tesla Roadster electric car is rated at 16.8kW how much energy does it use during a one hour car drive
    7·1 answer
  • How is speed determined?
    13·1 answer
  • Describe the climate, landforms,and existing plant and animal life during the cretaceous period
    12·2 answers
  • Which of the following waves have the longest wavelengths?
    15·2 answers
  • Easy defimation of newtons second law of motion
    8·1 answer
  • Explain what is meant by the term "electrical resistance"
    8·1 answer
  • Hello everyone.Roads are made winding in hilly regions why?Explain​
    14·1 answer
  • Use the energy equation from this week’s notes, your answer from
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!