Answer:
Explanation:
capacitance of parallel plate capacitor
c = ε A / d , d is distance between plates , A is surface area , ε is constant
As d becomes two times , Capacitance c = 1/ 2 times ie c / 2
potential V = Q / C
Q is constant , potential
v = Q / c /2
= 2 . Q / C
= 2 V
So potential difference becomes 2 times.
NEW P D = 398 X 2
= 796 V.
Answer:
Use specific tools built specifically for that specific measurement.
Explanation:
Explanation:
equating the parameters into the formula, it's gonna be
= ½ × 60 × 20²
= ½ × 60 × 400
= ½ × 24000
K.E = 12000J
Answer:
F = 0.78[N]
Explanation:
The given values correspond to forces, we must remember or take into account that the forces are vector quantities, that is, they have magnitude and direction. Since we have two X-Y coordinate axes (two-dimensional), we are going to decompose each of the forces into the X & y components.
<u>For F₁</u>
<u />
<u />
<u>For F₂</u>
![F_{x}=2*cos(60)\\F_{x}=1[N]\\F_{y}=-2*sin(60)\\F_{y}=-1.73[N]](https://tex.z-dn.net/?f=F_%7Bx%7D%3D2%2Acos%2860%29%5C%5CF_%7Bx%7D%3D1%5BN%5D%5C%5CF_%7By%7D%3D-2%2Asin%2860%29%5C%5CF_%7By%7D%3D-1.73%5BN%5D)
<u>For F₃</u>
<u />
<u />
Now we can sum each one of the forces in the given axes:
![F_{x}=1-0.866=0.134[N]\\F_{y}=2-1.73+0.5\\F_{y}=0.77[N]](https://tex.z-dn.net/?f=F_%7Bx%7D%3D1-0.866%3D0.134%5BN%5D%5C%5CF_%7By%7D%3D2-1.73%2B0.5%5C%5CF_%7By%7D%3D0.77%5BN%5D)
Now using the Pythagorean theorem we can find the total force.
![F=\sqrt{(0.134)^{2} +(0.77)^{2}}\\F= 0.78[N]](https://tex.z-dn.net/?f=F%3D%5Csqrt%7B%280.134%29%5E%7B2%7D%20%2B%280.77%29%5E%7B2%7D%7D%5C%5CF%3D%200.78%5BN%5D)
Answer:
0
Explanation:
the momentum will always be 0 when it is at rest because the object isnt moving!
Hope this helped!