Answer:
(a) q = 2.357 x 10⁻⁵ C
(b) Φ = 2.66 x 10⁶ N.m²/C
Explanation:
Given;
diameter of the sphere, d = 1.1 m
radius of the sphere, r = 1.1 / 2 = 0.55 m
surface charge density, σ = 6.2 µC/m²
(a) Net charge on the sphere
q = 4πr²σ
where;
4πr² is surface area of the sphere
q is the net charge on the sphere
σ is the surface charge density
q = 4π(0.55)²(6.2 x 10⁻⁶)
q = 2.357 x 10⁻⁵ C
(b) the total electric flux leaving the surface of the sphere
Φ = q / ε
where;
Φ is the total electric flux leaving the surface of the sphere
ε is the permittivity of free space
Φ = (2.357 x 10⁻⁵) / (8.85 x 10⁻¹²)
Φ = 2.66 x 10⁶ N.m²/C
You want to draw a free body diagram of the forces on the sled in the horizontal x-direction.
If you visualize the system in an x-y coordinate plane, the force along the x-direction is the angle it makes with the x-axis multiples by the force.
The angle made with the x-axis is cosine of the angle theta.
Please see picture attached.
Answer: Black hole.
Explanation:
As the massive star "compacts" under its own gravity, it triggers a massive supernova, after this point the remains of the star can become a neutron star, which is a very compact star made primarily, as the name says, of neutrons. The other possibility is a black hole, which is a finite region of space wherein it's interior there is a big concentration of mass, which creates a gravitational field strong enough that there is no particle that can escape it.
Answer:
78 km/h
Explanation:
If I normally drive a 12 hour trip at an average speed of 100 km/h, my destination has a total distance of:
- 100 km/h · 12 h = 1,200 km
Today, I drive the first 2/3 of the distance at 116 km/h. Let's first calculate what 2/3 of the normal distance is.
I've driven 800 km already. I need to drive 400 km more to reach my final destination. I need to figure out my average speed during this last 1/3 of the distance.
To do this, I first need to calculate how much time I spent driving 116 km/h for the past 800 km.
- 116 km/1 h = 800 km/? h
- 800 = 116 · ?
- ? = 800/116
- ? = 6.89655172
I spent 6.89655172 hours driving during the first 2/3 of the distance.
Now, I need to subtract this value from 12 hours to find the remaining time I have left.
- 12 h - 6.89655172 h = 5.10344828 h
Using this remaining time and my remaining distance, I can calculate my average speed.
- ? km/1 hr = 400 km/5.10344828 h
- 5.10344828 · ? = 400
- ? = 400/5.10344828
- ? = 78.3783783148
My average speed during the last third of the distance is around 78 km/h.
The answer would be A which is waves.