1. Divide wire b in parts x and b-x.
2. Bend the b-x piece to form a triangle with side (b-x)/3
There are many ways to find the area of the equilateral triangle. One is by the formula A=

A=

Another way is apply the formula A=1/2*base*altitude,
where the altitude can be found by applying the pythagorean theorem on the triangle with hypothenuse (b-x)/3 and side (b-x)/6
3. Let x be the circumference of the circle.

so

Area of circle =

4. Let f(x)=

be the function of the sum of the areas of the triangle and circle.
5. f(x) is a minimum means f'(x)=0
f'(x)=

=0



6. So one part is

and the other part is b-
Answer:
Wonka bars=3 and Everlasting Gobstoppers=24
Step-by-step explanation:
let the wonka bars be X
and everlasting gobstoppers be Y
the objective is to
maximize 1.3x+3.2y=P
subject to constraints
natural sugar
4x+2y=60------1
sucrose
x+3y=75---------2
x>0, y>0
solving 1 and 2 simultaneously we have
4x+2y=60----1
x+3y=75------2
multiply equation 2 by 4 and equation 1 by 1 to eliminate x we have
4x+2y=60
4x+12y=300
-0-10y=-240
10y=240
y=240/10
y=24
put y=24 in equation 2 we have'
x+3y=75
x+3(24)=75
x+72=75
x=75-72
x=3
put x=3 and y=24 in the objective function we have
maximize 1.3x+3.2y=P
1.3(3)+3.2(24)=P
3.9+76.8=P
80.7=P
P=$80.9
-2 + Y = 8
Y = 10
Plug in Y to the first equation, 10 + 4 = X
X = 14