Answer:
30.96 m
Explanation:
If the particle has a lifetime of 129 ns as measured by observer A, and has a speed of 0.8c as measured by observer A, the distance between the markers will be:
d = v * Δt
v = 0.8*c = 0.8 * 3e8 = 2.4e8
Δt = ζ = 129 ns = 1.29e-7 s
d = 2.4e8 * 1.29e-7 = 30.96 m
This is the distance as measured by observer A.
Answer: 4.9 x 10^6 joules
Explanation:
Given that:
mass of boulder (m) = 2,500 kg
Height of ledge above canyon floor (h) = 200 m
Gravita-tional potential energy of the boulder (GPE) = ?
Since potential energy is the energy possessed by a body at rest, and it depends on the mass of the object (m), gravitational acceleration (g), and height (h).
GPE = mgh
GPE = 2500kg x 9.8m/s2 x 200m
GPE = 4900000J
Place result in standard form
GPE = 4.9 x 10^6J
Thus, the gravita-tional potential energy of the boulder-Earth system relative to the canyon floor is 4.9 x 10^6 joules
The color white is what you'd see when every color of light is combined.
Answer:
a) the elastic force of the pole directed upwards and the force of gravity with dissects downwards
Explanation:
The forces on the athlete are
a) at this moment the athlete presses the garrolla against the floor, therefore it acquires a lot of elastic energy, which is absorbed by the athlete to rise and gain potential energy,
therefore the forces are the elastic force of the pole directed upwards and the force of gravity with dissects downwards
b) when it falls, in this case the only force to act is batrachium by the planet, this is a projectile movement for very high angles
c) When it reaches the floor, it receives an impulse that opposes the movement created by the mat. The attractive force is the attraction of gravity.