In this problem we have the electric field intensity E:
E = 6.5 ×
newtons/coulomb
We have the magnitude of the load:
q = 6.4 ×
coulombs
We also have the distance d that the load moved in a direction parallel to the field 1.2 ×
meters.
We know that the electric potential energy (PE) is:
PE = qEd
So:
PE = (6.4 ×
)(6.5 ×
)(1.2 ×
)
PE = 5.0 x
joules
None of the options shown is correct.
Answer:
1.11 V
Explanation:
Given that the Einstein photoelectric equation states that;
KE = E - Wo
E = energy of incident photon
Wo= work function of the metal
E = hf = 6.64 x 10-34 * 6 x 1014
E = 39.84 * 10^-20 J or 3.98 * 10^-19 J
KE = 3.98 * 10^-19 J - 2.2 x 10-19J
KE = 1.78 * 10^-19J
We convert this value of KE to electron volts
KE = 1.78 * 10^-19J/1.6 x 10-19C
KE = 1.11 eV
Hence; 1.11 V will be just sufficient to stop electrons emitted by the sodium photo-plate reaching the collector plate.
Answer:
A -TRUE
Explanation:
The mass, size, and shape of the object are not a factor in describing the motion of the object. So all objects, regardless of size or shape or weight, free fall with the same acceleration.
Answer:
true
Explanation:
this is the answer to this question
Answer:
0.125 m
Explanation:
Pressure in fluids is given as the product of density, height and acceleration due to gravity and expressed as
P=hdg
Where h is the height, d is density, g is acceleration due to gravity and P is pressure.
Making h the subject of formula then
h=P/dg
Given specific gravity of a substance, its density is equal to specific gravity multiplied by density of water. Taking density of pure water as 1000 kg/m³ then the density of reference fluid will be 1.05*1000=1050 kg/m³
Substituting pressure with 1.29*10³ pa as given then taking g as 9.81 m/s² then
H=1.29*10³÷(9.81*1050)=0.1252366389981068880151448958788408329692m
Rounded off, the height is approximately 0.125 m