Answer:
a)Yes will deform plastically
b) Will NOT experience necking
Explanation:
Given:
- Applied Force F = 850 lb
- Diameter of wire D = 0.15 in
- Yield Strength Y=45,000 psi
- Ultimate Tensile strength U = 55,000 psi
Find:
a) Whether there will be plastic deformation
b) Whether there will be necking.
Solution:
Assuming a constant Force F, the stress in the wire will be:
stress = F / Area
Area = pi*D^2 / 4
Area = pi*0.15^2 / 4 = 0.0176715 in^2
stress = 850 / 0.0176715
stress = 48,100.16 psi
Yield Strength < Applied stress > Ultimate Tensile strength
45,000 < 48,100 < 55,000
Hence, stress applied is greater than Yield strength beyond which the wire will deform plasticly but insufficient enough to reach UTS responsible for the necking to initiate. Hence, wire deforms plastically but does not experience necking.
1 - Skull
2 - Mandible
3 - Scapula
4 - Sternum
5 - Ulna
6 - Radius
7 - Pelvis
8 - Femur
9 - Patella
10 - Tibia
11 - Fibula
12 - Metatarsals
13 - Clavicle
14 - Ribs (rib cage)
15 - Humerus
16 - Spinal column
17 - Carpals
18 - Metacarpals
19 - Phalanges
20 - Tarsals
21 - Phalanges
<span>Contemporary skepticism (or scepticism) is loosely used to denote any questioning attitude,[1] or some degree of doubt regarding claims that are elsewhere taken for granted.[2] Usually meaning those who follow the evidence, [ [ versus those who are skeptical of the evidence (see:Denier) Skepticism is most controversial when it questions beliefs that are taken for granted by most of the
</span>
In order to solve the problem, it is necessary to apply the concepts related to the conservation of momentum, especially when there is an impact or the throwing of an object.
The equation that defines the linear moment is given by

where,
m=Total mass
Mass of Object
Velocity before throwing
Final Velocity
Velocity of Object
Our values are:

Solving to find the final speed, after throwing the object we have

We have three objects. For each object a launch is made so the final mass (denominator) will begin to be subtracted successively. In addition, during each new launch the initial speed will be given for each object thrown again.
That way during each section the equations should be modified depending on the previous one, let's start:
A) 



B) 



C) 



Therefore the final velocity of astronaut is 3.63m/s