We can use kinematics here if we assume a constant acceleration (not realistic, but they want a single value answer, so it's implied). We know final velocity, vf, is 1.0 m/s, and we cover a distance, d, of 0.47mm or 0.00047 m (1m = 1000mm for conversion). We also can assume that the flea's initial velocity, vi, is 0 at the beginning of its jump. Using the equation vf^2 = vi^2 + 2ad, we can solve for our acceleration, a. Like so: a = (vf^2 - vi^2)/2d = (1.0^2 - 0^2)/(2*0.00047) = 1,064 m/s^2, not bad for a flea!
- At pole the gravitation is more than that of equator .
And according to newtons second law
Force=Mass×Acceleration
And

- Hence force varies directly with acceleration hence weight will be more .
The magnitude of the electric field for 60 cm is 6.49 × 10^5 N/C
R(radius of the solid sphere)=(60cm)( 1m /100cm)=0.6m

Since the Gaussian sphere of radius r>R encloses all the charge of the sphere similar to the situation in part (c), we can use Equation (6) to find the magnitude of the electric field:

Substitute numerical values:

The spherical Gaussian surface is chosen so that it is concentric with the charge distribution.
As an example, consider a charged spherical shell S of negligible thickness, with a uniformly distributed charge Q and radius R. We can use Gauss's law to find the magnitude of the resultant electric field E at a distance r from the center of the charged shell. It is immediately apparent that for a spherical Gaussian surface of radius r < R the enclosed charge is zero: hence the net flux is zero and the magnitude of the electric field on the Gaussian surface is also 0 (by letting QA = 0 in Gauss's law, where QA is the charge enclosed by the Gaussian surface).
Learn more about Gaussian sphere here:
brainly.com/question/2004529
#SPJ4
Answer:
θ₁ = 5.4°
θ₂ = 10.86°
Explanation:
The angle ca be found by using grating equation:
mλ = d Sinθ
where,
m = order of diffraction
λ = wavelength = 405.3 nm = 4.053 x 10⁻⁷ m
d = grating element = 1/230 lines/mm = 0.0043 mm/line = 4.3 x 10⁻⁶ m/line
θ = angle = ?
FOR m = 1:
(1)(4.053 x 10⁻⁷ m) = (4.3 x 10⁻⁶ m/line) Sin θ₁
Sin θ₁ = 0.09425
θ₁ = Sin⁻¹(0.09425)
<u>θ₁ = 5.4°</u>
<u></u>
FOR m = 2:
(2)(4.053 x 10⁻⁷ m) = (4.3 x 10⁻⁶ m/line) Sin θ₁
Sin θ₂ = 0.1885
θ₂ = Sin⁻¹(0.1885)
<u>θ₂ = 10.86°</u>
Then the workers that made poison for rats would have to throw all of the poison in the garbage, sad, I know. Oh, if rats was eliminated from the environment, then cats that LOVE rats wont be poisoned by the rats that EAT the poison :). Yes, one of my mama cats died );