Answer:
The radius is 
Explanation:
From the question we are told that
The distance beneath the liquid is 
The refractive index of the liquid is 
Now the critical value is mathematically represented as
![\theta = sin ^{-1} [\frac{1}{n_i} ]](https://tex.z-dn.net/?f=%5Ctheta%20%3D%20%20sin%20%5E%7B-1%7D%20%5B%5Cfrac%7B1%7D%7Bn_i%7D%20%5D)
substituting values
![\theta = sin ^{-1} [\frac{1}{131} ]](https://tex.z-dn.net/?f=%5Ctheta%20%3D%20%20sin%20%5E%7B-1%7D%20%5B%5Cfrac%7B1%7D%7B131%7D%20%5D)

Using SOHCAHTOA rule we have that

=> 
substituting values


13 cm
just solved the same question on mastering physics<span />
Three moons can fit inside the volume of the sun.
<h3>What is the moon?</h3>
The moon is a non luminous body found in the space. It could cause a solar eclipse when it comes between the sun and the earth.
Since the Earth’s diameter is about 8,000 miles and the Moon’s diameter is about 2,000 miles, to obtain the number of moons that could fit inside the sun we have;
8,000 miles/ 2,000 miles = 3
Hence, three moons can fit inside the volume of the sun.
Learn more about the moon:brainly.com/question/13538936
#SPJ1
Answer:
more speed means that an object has more energy, now if an object's place is something such as a hill, the potential energy will increase meaning an object will have more speed and acceleration. this is because you have the earth's gravity helping you out when the object goes downhill, giving it the higher potential energy
Answer:
Because of the speed of the sound.
Explanation:
The first thing that happens in such cases is to take into account the speed of the sound. First, we see that the player hits the ball with the bat, if we are in the stands far enough we will hear the sound of the batting time later, this time depends on the speed of the sound which is equal to 345 [m/s].
Another visible and practical example is a fireworks display, where people nearby immediately hear the explosion. while those at a great distance will be able to see first the explosion followed by the sound.
With the following equation, we can calculate how long it takes to hear a hit or explosion
t = x / v
where:
x = distance [m]
v = sound velocity = 345 [m/s]
t = time [s]