1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
lana66690 [7]
3 years ago
6

After today i might not be here no more

Physics
2 answers:
mihalych1998 [28]3 years ago
8 0

Answer:

Oh no! Why? Something wrong ?

Explanation:

Norma-Jean [14]3 years ago
6 0

Answer:

aw why? are you deleting the app for school?

You might be interested in
A velocity selector in a mass spectrometer uses an electric field of 4.4 x 105 V/m. What magnetic field strength (in Tesla) is n
Brut [27]

Answer:

  B = 9.16 10⁻²  T

Explanation:

The speed selector is a configuration where the electric and magnetic force has the opposite direction, which for a specific speed cancel

       q v B = q E

       v = E / B

       B = E / v

Let's calculate

      B = 4.4 10⁵ / 4.8 10⁶

      B = 9.16 10⁻²  T

5 0
3 years ago
What is the mass of something that weighs 300 N on earth
jeka57 [31]

Answer:

30.5810 kg

Explanation:

6 0
3 years ago
A gun is fired on a day when the speed of sound is 335 m/s and an echo is heard 0.75 seconds later. How far away is the object t
cricket20 [7]

Answer:

v= 335 m/s

2∆t= 0.75 s

∆x= v.∆t → ∆x= 335×½×0.75 = 125.625 m

8 0
3 years ago
Two 22.7 kg ice sleds initially at rest, are placed a short distance apart, one directly behind the other, as shown in Fig. 1. A
boyakko [2]

Newton's third law of motion sates that force is directly proportional to the rate of change of momentum produced

(a) The final speeds of the ice sleds is approximately 0.49 m/s each

(b) The impulse on the cat is 11.0715 kg·m/s

(c) The average force on the right sled is 922.625 N

The reason for arriving at the above values is as follows:

The given parameters are;

The masses of the two ice sleds, m₁ = m₂ = 22.7 kg

The initial speed of the ice, v₁ = v₂ = 0

The mass of the cat, m₃ = 3.63 kg

The initial speed of the cat, v₃ = 0

The horizontal speed of the cat, v₃ = 3.05 m/s

(a) The required parameter:

The final speed of the two sleds

For the first jump to the right, we have;

By the law of conservation of momentum

Initial momentum = Final momentum

∴ m₁ × v₁ + m₃ × v₃ = m₁ × v₁' + m₃ × v₃'

Where;

v₁' = The final velocity of the ice sled on the left

v₃' = The final velocity of the cat

Plugging in the values gives;

22.7 kg × 0 + 3.63 × 0 = 22.7 × v₁' + 3.63 × 3.05

∴  22.7 × v₁'  = -3.63 × 3.05

v₁' =  -3.63 × 3.05/22.7 ≈ -0.49

The final velocity of the ice sled on the left, v₁' ≈ -0.49 m/s (opposite to the direction to the motion of the cat)

The final speed ≈ 0.49 m/s

For the second jump to the left, we have;

By conservation of momentum law,  m₂ × v₂ + m₃ × v₃ = m₂ × v₂' + m₃ × v₃'

Where;

v₂' = The final velocity of the ice sled on the right

v₃' = The final velocity of the cat

Plugging in the values gives;

22.7 kg × 0 + 3.63 × 0 = 22.7 × v₂' + 3.63 × 3.05

∴  22.7 × v₂'  = -3.63 × 3.05

v₂' =  -3.63 × 3.05/22.7 ≈ -0.49

The final velocity of the ice sled on the right = -0.49 m/s (opposite to the direction to the motion of the cat)

The final speed ≈ 0.49 m/s

(b) The required parameter;

The impulse of the force

The impulse on the cat = Mass of the cat × Change in velocity

The change in velocity, Δv = Initial velocity - Final velocity

Where;

The initial velocity = The velocity of the cat before it lands = 3.05 m/s

The final velocity = The velocity of the cat after coming to rest =

∴ Δv = 3.05 m/s - 0 = 3.05 m/s

The impulse on the cat = 3.63 kg × 3.05 m/s = 11.0715 kg·m/s

(c) The required information

The average velocity

Impulse = F_{average} × Δt

Where;

Δt = The time of collision = The time it takes the cat to finish landing = 12 ms

12 ms = 12/1000 s = 0.012 s

We get;

F_{average} = \mathbf{\dfrac{Impulse}{\Delta \ t}}

∴ F_{average} = \dfrac{11.0715 \ kg \cdot m/s}{0.012 \ s}  = 922.625 \ kg\cdot m/s^2 = 922.625 \ N  

The average force on the right sled applied by the cat while landing, \mathbf{F_{average}} = 922.625 N

Learn more about conservation of momentum here:

brainly.com/question/7538238

brainly.com/question/20568685

brainly.com/question/22257327

8 0
2 years ago
When is steven universe coming back 2017?
Vsevolod [243]
<span>Steven universe has aired May 29, 2017, it is aired over the course of the series. Episodes are broadcast one a week with a 22-minute length per episode, it has 5 episodes per week.</span>
3 0
4 years ago
Read 2 more answers
Other questions:
  • What is the name of a very porous igneous rock that is so light that it floats?
    14·1 answer
  • Is it correct to say that constant speed = 0 acceleration = no resultant force?
    13·1 answer
  • The magnetic field of a long, straight, and closely-wound solenoid, inside the solenoid at a point near the center, is 0.645 T.
    9·1 answer
  • Suppose a body has a force of 10 pounds acting on it to the right, 25 pounds acting on it −135° from the horizontal, and 5 pound
    13·1 answer
  • The linear momentum of a car of mass 1000 kg moving with a speed of 10 m/s is-----kg.m/s. HELP ME
    5·1 answer
  • Why are satellites placed into orbit at least 150 km above Earth’s surface?
    12·2 answers
  • An airplane takes off a runway at a constant speed of 49m/s at constant angle 30 to the horizontal
    6·1 answer
  • Margaret walks to the store using the following path 0.630 mi west, 0.370 mi north, 0.180 mi east. assume north to be along the
    6·1 answer
  • At what distance from a 0.100 C<br> charge will the electric field be<br> 10000 N/C?<br> (Unit = m)
    5·1 answer
  • Each of the rods depicted below were machined from same stock metal. They were originally machined to be the same length, but th
    8·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!