Answer:
0.786 Hz, 1.572 Hz, 2.358 Hz, 3.144 Hz
Explanation:
The fundamental frequency of a standing wave on a string is given by

where
L is the length of the string
T is the tension in the string
is the mass per unit length
For the string in the problem,
L = 30.0 m

T = 20.0 N
Substituting into the equation, we find the fundamental frequency:

The next frequencies (harmonics) are given by

with n being an integer number and f being the fundamental frequency.
So we get:



Answer:
1/4 times your earth's weight
Explanation:
assuming the Mass of earth = M
Radius of earth = R
∴ the mass of the planet= 4M
the radius of the planet = 4R
gravitational force of earth is given as = 
where G is the gravitational constant
Gravitational force of the planet = 
=
=
recall, gravitational force of earth is given as = 
∴Gravitational force of planet = 1/4 times the gravitational force of the earth
you would weigh 1/4 times your earth's weight
Answer: A
Explanation: isotopes of the same thing element have the same number of protons in the nucleus but differ in the number of neutrons.
Answer:
The correct answer is A. Vibration.
Explanation:
Mechanical waves is formed by the oscillation of matter and therefore transfer energy from one medium to the other. Unlike electromagnetic waves, mechanical waves need some medium to propagate. It requires an initial energy input and thus carries this energy when it propagates. There are three types of mechanical waves namely transverse waves, longitudinal waves and surface waves. Examples of such waves are sound waves, water waves and seismic waves.