Answer:
none of them are equal to one mole
Mass=density·volume. The density is 2.70g/mL and the volume is 353mL. So you would multiply 2.70g/mL by 353mL which will give you 953.1g. Hope that helps :)
Answer with Explanation:
This is expirament based Q
1) Bring a magnet near ... the Cobalt will come out of te mixture and get attracted to magnet
2) Disolve it in a solution of ethanol. The Idoine gets dissolve and the other doesnt.
Hope im right!!
<h3>
Answer:</h3>
126 g Fe
<h3>
General Formulas and Concepts:</h3>
<u>Math</u>
<u>Pre-Algebra</u>
Order of Operations: BPEMDAS
- Brackets
- Parenthesis
- Exponents
- Multiplication
- Division
- Addition
- Subtraction
<u>Chemistry</u>
<u>Atomic Structure</u>
- Reading a Periodic Table
- Using Dimensional Analysis
<h3>
Explanation:</h3>
<u>Step 1: Define</u>
2.25 mol Fe
<u>Step 2: Identify Conversions</u>
Molar Mass of Fe - 55.85 g/mol
<u>Step 3: Convert</u>
- Set up:

- Multiply:

<u>Step 4: Check</u>
<em>Follow sig fig rules and round. We are given 3 sig figs.</em>
125.663 g Fe ≈ 126 g Fe
Answer:
After 3 half lives 10 g of radio active material left.
Explanation:
Given data:
Total amount of radio active material = 80 g
Amount left after 3 half lives = ?
Solution:
At time zero = 80 g
At first half life = 80 g/2 = 40 g
At 2nd half life = 40 g/2 = 20 g
At 3rd half life = 20 g/2 = 10 g
Thus, after 3 half lives 10 g of radio active material left.