Answer:
B. Trial 2
Explanation:
Trial 2, because the student’s finger applied the largest force to the sensor.
Because the trial 2 student finger applied to largest force.
Answer: D
Reduced impact time will increase the impact force
Explanation: Collision occurs when two or more bodies collide and exert forces on each other within a short time.
If a body of mass M moving with a velocity V collide with another body, the kinetic energy of the body is equal to the work done by the body.
That is, K.E = 1/2mv^2 = F × s
Where workdone = Force × distance
Make F the subject of formula
Mv^2/2s = F
But V = distance s/time t
Substitute for V
Ms^2/2t^2s = F
Ms/2t^2 = F
From the equation above, we can deduce that F is inversely proportional to the square of time.
Therefore, the reduced impact time will increase the impact force
Answer:
The average power delivered by the elevator motor during this period is 6.686 kW.
Explanation:
Given;
mass of the elevator, m = 636 kg
initial speed of the elevator, u = 0
time of motion, t = 4.5 s
final speed of the elevator, v = 2.05 m/s
The upward force of the elevator is calculated as;
F = m(a + g)
where;
m is mass of the elevator
a is the constant acceleration of the elevator
g is acceleration due to gravity = 9.8 m/s²

F = (636)(0.456 + 9.8)
F = (636)(10.256)
F = 6522.816 N
The average power delivered by the elevator is calculated as;

Therefore, the average power delivered by the elevator motor during this period is 6.686 kW.
Answer:
With a 50-mL graduated cylinder, read and record the volume to the nearest 0.1 mL. The 10-mL graduated cylinder scale is read to the nearest 0.01 mL and the 500-mL graduated cylinder scale is read to the nearest milliliter (1 mL). A buret is a scaled cylindrical tube attached to a stopcock, or valve.