Answer:
Fractional error = 0.17
Percent error = 17%
F = 112 ± 19 N
Explanation:
Plug in the values to find the force:
F = (3.5 kg) (20 m/s)² / (12.5 m) = 112 N
Find the fractional error:
ΔF/F = Δm/m + 2Δv/v + Δr/r
ΔF/F = 0.1/3.5 + 2(1/20) + 0.5/12.5
ΔF/F = 0.17
Multiply by 100% to find the percent error:
ΔF/F × 100% = 17%
Solve for the absolute error:
ΔF = 0.17 × 112 N = 19 N
Therefore, the force is:
F = 112 ± 19 N
It does not violate the law of conservation of energy. The oscillation stops when the energy is lost and the energy is lost because it becomes heat that is created by the air resistance and many other forces found in the surrounding of the oscillating spring.
We can make pretty good guesses for their masses, but kinetic energy also depends on their speeds, which we don't know, and may change.
As an example ... If the truck, the van, the car, and the bike are all parked at the mall, then a scampering mouse has more kinetic energy than all of them combined.
As the question stands, no answer is possible.
Answer:
The size of the image is 1.04 m.
Explanation:
Given that,
Height of object = 2.40 m
Distance of object = 2.60 m
Radius of curvature =4.00 m
Focal length 
We need to calculate the image distance
Using mirror formula




We need to calculate the height of the image
Using formula of magnification

Put the value into the formula



Hence, The size of the image is 1.04 m
Answer:
A = 1.54 x 10⁻⁵ m² = 15.4 mm²
Explanation:
The resistance of a wire can be given by the following formula:

where,
A = smallest cross-sectional area = ?
ρ = resistivity of copper = 1.54 x 10⁻⁸ Ωm
= resistance per unit length of wire = 0.001 Ω/m
Therefore,

<u>A = 1.54 x 10⁻⁵ m² = 15.4 mm²</u>