The option that is the correct one concerning the uncontrolled burn phase is:
- The uncontrolled burn phase is characterized by uncontrolled combustion in a cylinder until fuel accumulated during ignition delay is burned.
<h3>What is uncontrolled combustion?</h3>
Uncontrolled Combustion is known to be the the time and place in which a kind of an ignition will stop and it is said to be never fixed by anything in regards to the compression ignition engine as seen in SI engines.
Note that the four Stages of combustion are:
1. Pre-flame combustion
2. Uncontrolled combustion
3. Controlled combustion and
4. After burning
Hence, The uncontrolled burn phase is characterized by uncontrolled combustion in a cylinder until fuel accumulated during ignition delay is burned as all the fuel need to burn out.
Learn more about burn phase from
brainly.com/question/14414049
#SPJ1
We will all chaotically burn to death!
Hope this helps!!
Answer:
Explanation:
Given that,
Initial Angular velocity w=500rpm
Converting from rpm to rad/s
1rev =2πrad
1minutes =60secs
500rpm=500rev/mins
w = 500×2π/60
wi=52.36rad/s
The final angular velocity wf=0rad/s
Time to stop is t=2.6sec
We want to find angular acceleration α
Using the equation of angular motion
wf = wi + αt.
0 = 52.36 + 2.6α
-52.36=2.6α
α = -52.36/2.6
α = -20.14rad/s²
The angular acceleration is negative because it is decelerating.
Then, α=20.14rad/s²
Answer:
The amplitude is
Explanation:
From the question we are told that
The frequency of when sound is approaching observer is 
The frequency as the move away from observer is 
The time between the pitch are 
Here you are the observer and your friends are the source of the sound
The period is mathematically evaluated as

as it is the time to complete one oscillation which from on highest pitch to the next highest pitch
Now T can also be mathematically represented as

Where
is the angular velocity
=> 
=> 
Now using Doppler Effect,
The source of the sound is approaching the observer
The


Where A is the amplitude
So when the source is moving away from the observer
Here
is the fundamental frequency
Dividing the both equation we have




=> 
