1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
vredina [299]
2 years ago
6

What is the Net Force of the applied forces? *

Physics
1 answer:
Oduvanchick [21]2 years ago
3 0
All of anove
Bc it make sense
You might be interested in
Consider an optical cavity of length 40 cm. Assume the refractive index is 1, and use the formula for Icavity vs wavelength to p
Bad White [126]

Answer:

Diode Lasers  

Consider a InGaAsP-InP laser diode which has an optical cavity of length 250  

microns. The peak radiation is at 1550 nm and the refractive index of InGaAsP is  

4. The optical gain bandwidth (as measured between half intensity points) will  

normally depend on the pumping current (diode current) but for this problem  

assume that it is 2 nm.  

(a) What is the mode integer m of the peak radiation?  

(b) What is the separation between the modes of the cavity? Please express your  

answer as Δλ.  

(c) How many modes are within the gain band of the laser?  

(d) What is the reflection coefficient and reflectance at the ends of the optical  

cavity (faces of the InGaAsP crystal)?  

(e) The beam divergence full angles are 20° in y-direction and 5° in x-direction  

respectively. Estimate the x and y dimensions of the laser cavity. (Assume the  

beam is a Gaussian beam with the waist located at the output. And the beam  

waist size is approximately the x-y dimensions of the cavity.)  

Solution:  

(a) The wavelength λ of a cavity mode and length L are related by  

n

mL

2

λ = , where m is the mode number, and n is the refractive index.  

So the mode integer of the peak radiation is  

1290

1055.1

10250422

6

6

= ×

××× == −

−

λ

nL

m .  

(b) The mode spacing is given by nL

c f 2

=Δ . As

λ

c f = , λ

λ

Δ−=Δ 2

c f .  

Therefore, we have nm

nL f

c

20.1

)10250(42

)1055.1(

2 || 6

2 2 26

= ×××

× ==Δ=Δ −

− λλ λ .  

(c) Since the optical gain bandwidth is 2nm and the mode spacing is 1.2nm, the  

bandwidth could fit in two possible modes.  

For mode integer of 1290, nm

m

nL 39.1550

1290

10250422 6

= ××× ==

−

λ

Take m = 1291, nm

m

nL 18.1549

1291

10250422 6

= ××× ==

−

λ

Or take m = 1289, nm

m

nL 59.1551

1289

10250422 6

= ××× ==

−

λ .

Explanation:

8 0
3 years ago
Echnician a says that to prevent injuries in an auto accident, all steering columns have a break-off steering wheel. technician
Oliga [24]
<span>Technician a says that to prevent injuries in an auto accident, all steering columns have a break-off steering wheel. technician b says that to prevent injuries in an accident, all steering columns are now fitted with a flexible rubber tube. Both technicians are correct.   The </span>vehicle manufacturers use break away steering column mounting brackets to protect the driver in an accident.  The <span>vehicle manufacturers are required to use collapsible shafts in the steering column. </span>
4 0
3 years ago
How does the electrostatic force compare with the strong nuclear force in the
diamong [38]

Answer:

Strong nuclear force is 1-2 order of magnitude larger than the electrostatic force

Explanation:

There are mainly two forces acting between protons and neutrons in the nucleus:

- The electrostatic force, which is the force exerted between charged particles (therefore, it is exerted between protons only, since neutrons are not charged). The magnitude of the force is given by

F_E=\frac{kq_1 q_2}{r^2}

where k is the Coulomb's constant, q1 and q2 are the  charges of the two particles, r is the separation between the particles.

The force is attractive for two opposite charges and repulsive for two same charges: therefore, the electrostatic force between two protons is repulsive.

- The strong nuclear force, which is the force exerted between nucleons. At short distance (such as in the nucleus), it is attractive, therefore neutrons and protons attract each other and this contributes in keeping the whole nucleus together.

At the scale involved in the nucleus, the strong nuclear force (attractive) is 1-2 order of magnitude larger than the electrostatic force (repulsive), therefore the nucleus stays together and does not break apart.

3 0
3 years ago
Read 2 more answers
Acceleration is defined as the rate of change for which characteristic?
Alenkasestr [34]

1) C. velocity

Acceleration is defined as the rate of change of velocity per unit time. In formulas:

a=\frac{\Delta v}{\Delta t}

where

\Delta v is the change in velocity

\Delta t is the time interval

Therefore, the correct answer is C. velocity.


2) A. 9.8m/s/s

Earth's gravity is a force, so it produces an acceleration on every object with mass located on the Earth's surface. This acceleration can be calculated, as it is given by the formula

g=\frac{GM}{r^2}

where

G=6.67\cdot 10^{-11} m^3 kg^{-1} s^{-2} is the gravitational constant

M=5.98\cdot 10^{24} kg is the Earth's mass

r=6.37\cdot 10^6 m is the Earth's radius

By substituting these numbers into the formula, one can find that the acceleration due to Earth's gravity is g=9.81 m/s^2.

7 0
3 years ago
Read 2 more answers
A steel beam that is 5.50 m long weighs 332 N. It rests on two supports, 3.00 m apart, with equal amounts of the beam extending
ElenaW [278]

Explanation:

The given data is as follows.

    Length of beam, (L) = 5.50 m

    Weight of the beam, (W_{b}) = 332 N

     Weight of the Suki, (W_{s}) = 505 N

After crossing the left support of the beam by the suki then at some overhang distance the beam starts o tip. And, this is the maximum distance we need to calculate. Therefore, at the left support we will set up the moment and equate it to zero.

                 \sum M_{o} = 0

     -W_{s} \times x + W_{b} \times 1.5 = 0

                x = \frac{W_{b} \times 1.5}{W_{s}}

                   = \frac{332 N \times 1.5}{505 N}

                   = 0.986 m

Hence, the suki can come (2 - 0.986) m = 1.014 from the end before the beam begins to tip.

Thus, we can conclude that suki can come 1.014 m close to the end before the beam begins to tip.

8 0
3 years ago
Other questions:
  • A NASA spacecraft measures the rate of at which atmospheric pressure on Mars decreases with altitude. The result at a certain al
    12·1 answer
  • How is newtons third law of motion demonstrated on a roller coaster?
    8·1 answer
  • The proper order of the cycle of addiction is​
    12·2 answers
  • A machine part is undergoing SHM with a frequency of 5.00Hz and amplitude 1.80cm . How long does it take the part to gofrom x=0
    13·1 answer
  • If Mars were the same size as Mercury (instead of its actual size), which surface features would it have?
    7·1 answer
  • When the northern hemisphere is tilted toward the sun that part of the earth is closer to the sun and thus hotter? True or false
    8·1 answer
  • If the voltage drop across the first resistor is 13.00V, then how many volts remain for the 2nd resistor?
    6·2 answers
  • 2. A brick is sitting on a building 22 m high. It has a mass of 7.9 kg. What amount of potential
    13·1 answer
  • Nikki has a momentum of 45 Kilogram meters per second and a mass of 30 Kilograms. What is her velocity?
    12·1 answer
  • 1.concave lens
    14·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!