Where are the pictures or options?
Answer:
The percentage of its mechanical energy does the ball lose with each bounce is 23 %
Explanation:
Given data,
The tennis ball is released from the height, h = 4 m
After the third bounce it reaches height, h' = 183 cm
= 1.83 m
The total mechanical energy of the ball is equal to its maximum P.E
E = mgh
= 4 mg
At height h', the P.E becomes
E' = mgh'
= 1.83 mg
The percentage of change in energy the ball retains to its original energy,
ΔE % = 45 %
The ball retains only the 45% of its original energy after 3 bounces.
Therefore, the energy retains in each bounce is
∛ (0.45) = 0.77
The ball retains only the 77% of its original energy.
The energy lost to the floor is,
E = 100 - 77
= 23 %
Hence, the percentage of its mechanical energy does the ball lose with each bounce is 23 %
Answer:
0.49 cm
Explanation:
We are given that


Mass of water,m=100 g
a.
Volume,
Length of water column in the right arm=
b.
In equilibrium condition
Pressure at point A=Pressure at point B







Answer:
applying 1st eq of motion vf=vi+at here we have to find a=vf-vi/t , a= 1-1/5 , a=0/5 then we got a=0 here(vf value 3.6km/h is converted in standard unit 3.6×1000/3600 so we get vf=1m/s²