Note: I'm not sure what do you mean by "weight 0.05 kg/L". I assume it means the mass per unit of length, so it should be "0.05 kg/m".
Solution:
The fundamental frequency in a standing wave is given by

where L is the length of the string, T the tension and m its mass. If we plug the data of the problem into the equation, we find

The wavelength of the standing wave is instead twice the length of the string:

So the speed of the wave is

And the time the pulse takes to reach the shop is the distance covered divided by the speed:
Answer:
work = 1728
Power = 134
Explaination:
by using the formula,
Work(W)= Force(F)×Distance(D)
<h2>
and</h2>
Power(P)= Work(W)/Time taken(T)
Answer:
V = 20.5 m/s
Explanation:
Given,
The mass of the cart, m = 6 Kg
The initial speed of the cart, u = 4 m/s
The acceleration of the cart, a = 0.5 m/s²
The time interval of the cart, t = 30 s
The final velocity of the cart is given by the first equation of motion
v = u + at
= 4 + (0.5 x 30)
= 19 m/s
Hence the final velocity of cart at 30 seconds is, v = 19 m/s
The speed of the cart at the end of 3 seconds
V = 19 + (0.5 x 3)
= 20.5 m/s
Hence, the final velocity of the cart at the end of this 3.0 second interval is, V = 20.5 m/s
Answer:




Explanation:
r = Radius
k = Coulomb constant = 
Electric field is given by

The charge is 

The charge is 
The charge inside will have the polarity changed

Outside the charge will be

Answer:
D = 9.9 10⁶ mi
Explanation:
In the exercise they give the expression for maximum viewing distance
D = 2 r h + h²
Ask for this distance for a height of 1100 feet
Let's calculate
D = 2 3960 1100 + 1100²
D = 8.712 10⁶ + 1.21 10⁶
D = 9.92 10⁶ mi
D = 9.9 10⁶ mi