The point midway between the two charges is located 15.0 cm from one charge and 15.0 from the other charge. The electric field generated by each of the charges is
where
ke is the Coulomb's constant
Q is the value of the charge
r is the distance of the point at which we calculate the field from the charge (so, in this problem, r=15.0 cm=0.15 m).
Let's calculate the electric field generated by the first charge:
While the electric field generated by the second charge is
Both charges are positive, this means that both electric fields are directed toward the charge. Therefore, at the point midway between the two charges the two electric fields have opposite direction, so the total electric field at that point is given by the difference between the two fields:
Answer:
16 times that of car A
Explanation:
Moving objects have kinetic energy which is calculated using the formula:
E=(1/2)mv² where m is the mass of the object and v is its velocity.
For car A, kinetic energy =1/2×m×15²
=112.5m........................................i
For car B, the kinetic energy =1/2×m×60²
=1800m......................................ii
dividing ii by i we get
1800m/112.5m= 16.07
Therefore The kinetic energy of car B is 16.07 times that of car A
<span>Extremely powerful single waves have no effect on ships at sea since the depth of water allows the energy to be distributed over hundreds and thousands of feet. In deep water, the bigger the wave, the faster it moves and the slower the surface changes height. As the wave gets into shallow waters, it slows down and can start to pile up to large heights.</span>
Answer:
hey how are you
are these points for free or something
False, all scene are combed for clues and photographed.