Answer: 272.82 drop/tile
Explanation:
Given that the Rain drops fall on a tile surface at a density of 4638 drops/ft2. There are 17 tiles/ft2. How many drops fall on each tile?
Tiles/ft^2 × drop/tiles = drop/ft^2
Tiles will cancel out. Leaving the answer to be drop/ ft^2
Substitutes all the magnitude of the above units.
17 × drop/tiles = 4638
Make drop/tiles the subject of formula
Drop/tiles = 4638/17
Drop/tiles = 272.82
Therefore, 272.82 drop/tile drops fall on each tile?
If the solution is treated as an ideal solution, the extent of freezing
point depression depends only on the solute concentration that can be
estimated by a simple linear relationship with the cryoscopic constant:
ΔTF = KF · m · i
ΔTF, the freezing point depression, is defined as TF (pure solvent) - TF
(solution).
KF, the cryoscopic constant, which is dependent on the properties of the
solvent, not the solute. Note: When conducting experiments, a higher KF
value makes it easier to observe larger drops in the freezing point.
For water, KF = 1.853 K·kg/mol.[1]
m is the molality (mol solute per kg of solvent)
i is the van 't Hoff factor (number of solute particles per mol, e.g. i =
2 for NaCl).
From convection of magma under the earths crust makes the plates slowly move and as they move over time they build up potential energy from the different plates grinding against each other and after so long the plates will lose there grip on each other and release the potential energy they've been building up for so long as kinetic energy causing what you know as an earthquake hope this helps please give brainliest
Answer:
Height, H = 25.04 meters
Explanation:
Initially the ball is at rest, u = 0
Time taken to fall to the ground, t = 2.261 s
Let H is the height from which the ball is released. It can be calculated using the second equation of motion as :

Here, a = g
H = 25.04 meters
So, the ball is released form a height of 25.04 meters. Hence, this is the required solution.