<h3>
Answer:</h3>
"<u>Therefore, the speed of the air decreases, the pressure acting on the two trains increases (by Bernoulli's principle), and the two trains lean in toward one another</u>."
Answer:
we have to measure distances and time, possibly with an automated system since the values are very small
Explanation:
For this exercise we can use the relationship between momentum and momentum
I = ∫ F dt = Δp
F t = m
- mv₀
In the exercise they indicate that the final speed is zero
F t = - m v₀
F = -m v₀ / t
With this equation we can find what measurements should be carried out.
To find the speed with which the car collides with the wall, less measure the displacement and its time during the braking process before reaching the wall and from here find the speed with which it reaches the wall.
During the impact, we must find the time that the vehicle is in contact with the wall in the first approach is equal to the time that the car takes to reach the final speed of zero.
In summary we have to measure distances and time, possibly with an automated system since the values are very small
Answer:
option d) -9 J
Explanation:
Given:
Mass, m = 3.0 kg
time, t = 6.0 seconds
Velocity of mass, v = 2.0 m/s
height, h = 2 m
Now, using the concept of work-Energy theorem
we have
Net work done = change in kinetic energy
or
Work done by gravity + work done by the friction = Final kinetic energy - Initial kinetic energy
mgh +
= 
on substituting the values in the above equation, we get
3 × 9.8 × 2 +
= 
or
58.8 +
= 6
or
= -52.8 J
here negative sign depicts that the work is done against the motion of the mass
also,
Power = (Work done)/time
or
Power = -52.8/6 = -8.8 W ≈ 9 J
Hence, option d) -9 J is correct
<span>Describe the relationship of attractive forces between molecules and the ability of a solvent to dissolve a substance. Solvents can dissolve a substance only if the attraction of the solvent molecules is greater than the attraction between the molecules of the substance.</span>
To determine the object which could give the greatest impact we will apply the concept of momentum. The object that has the highest momentum will be the object that will impact the strongest. Our values are
Mass of Object A

Velocity of object A

Mass of object B

Velocity of object B

The general formula for momentum is the product between mass and velocity, then

For each object we have then,


Since the momentum of object A is greater than that of object B, then object A will make you feel force upon impact.