1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Gala2k [10]
3 years ago
5

I need help with this question​

Mathematics
1 answer:
qaws [65]3 years ago
6 0
18 ft each cube is 6ft and 6x3=18 (3 because there is three cubes)
You might be interested in
The formula for circumference of a circle is C=2pi r, where r is the radius
Colt1911 [192]
Why yes, yes it is just that.



...........................
7 0
3 years ago
PLS HELP ASAP THANKS ILL GIVE BRAINLKEST PLS THANKS PLS
gayaneshka [121]

Answer:

( 1, -2)

step-by-step explanation:

  • original coordinates of C: (4, -2)

if reflected over y-axis: use the formula: (x,y) → (-x,y)

  • new coordinates: (-4, -2)

then if translated 5 units horizontally, there will be change in x axis:

  • new coordinates: (-4+5, -2) → ( 1, -2)
7 0
2 years ago
What is the molarity of a solution
Vika [28.1K]

Answer:

0.670. M

Step-by-step explanation:

Molarity can be expressed like this:

molarity =  number of moles /volume (L)

We know the volume, which is  2.37 L , but we need to find the number of moles. We can do this by dividing  67.3 g  by the molar mass of  L i C l :

number of moles  = mass of sample /molar mass

number of moles  =  67.3 g /(6.94 + 35.45) g/mol  = 67.3 g /42.39 g/mol

number of moles = 1.59 mol

molarity = 1.59 mol /2.37 L =  0.670. M

7 0
2 years ago
La potencia que se obtiene de elevar a un mismo exponente un numero racional y su opuesto es la misma verdadero o falso?
malfutka [58]

Answer:

Falso.

Step-by-step explanation:

Sea d = \frac{a}{b} un número racional, donde a, b \in \mathbb{R} y b \neq 0, su opuesto es un número real c = -\left(\frac{a}{b} \right). En el caso de elevarse a un exponente dado, hay que comprobar cinco casos:

(a) <em>El exponente es cero.</em>

(b) <em>El exponente es un negativo impar.</em>

(c) <em>El exponente es un negativo par.</em>

(d) <em>El exponente es un positivo impar.</em>

(e) <em>El exponente es un positivo par.</em>

(a) El exponente es cero:

Toda potencia elevada a la cero es igual a uno. En consecuencia, c = d = 1. La proposición es verdadera.

(b) El exponente es un negativo impar:

Considérese las siguientes expresiones:

d' = d^{-n} y c' = c^{-n}

Al aplicar las definiciones anteriores y las operaciones del Álgebra de los números reales tenemos el siguiente desarrollo:

d' = \left(\frac{a}{b} \right)^{-n} y c' = \left[-\left(\frac{a}{b} \right)\right]^{-n}

d' = \left(\frac{a}{b} \right)^{(-1)\cdot n} y c' = \left[(-1)\cdot \left(\frac{a}{b} \right)\right]^{(-1)\cdot n}

d' = \left[\left(\frac{a}{b} \right)^{-1}\right]^{n}y c' = \left[(-1)^{-1}\cdot \left(\frac{a}{b} \right)^{-1}\right]^{n}

d' = \left(\frac{b}{a} \right)^{n} y c = (-1)^{n}\cdot \left(\frac{b}{a} \right)^{n}

d' = \left(\frac{b}{a} \right)^{n} y c' = \left[(-1)\cdot \left(\frac{b}{a} \right)\right]^{n}

d' = \left(\frac{b}{a} \right)^{n} y c' = \left[-\left(\frac{b}{a} \right)\right]^{n}

Si n es impar, entonces:

d' = \left(\frac{b}{a} \right)^{n} y c' = - \left(\frac{b}{a} \right)^{n}

Puesto que d' \neq c', la proposición es falsa.

(c) El exponente es un negativo par.

Si n es par, entonces:

d' = \left(\frac{b}{a} \right)^{n} y c' = \left(\frac{b}{a} \right)^{n}

Puesto que d' = c', la proposición es verdadera.

(d) El exponente es un positivo impar.

Considérese las siguientes expresiones:

d' = d^{n} y c' = c^{n}

d' = \left(\frac{a}{b}\right)^{n} y c' = \left[-\left(\frac{a}{b} \right)\right]^{n}

d' = \left(\frac{a}{b} \right)^{n} y c' = \left[(-1)\cdot \left(\frac{a}{b} \right)\right]^{n}

d' = \left(\frac{a}{b} \right)^{n} y c' = (-1)^{n}\cdot \left(\frac{a}{b} \right)^{n}

Si n es impar, entonces:

d' = \left(\frac{a}{b} \right)^{n} y c' = - \left(\frac{a}{b} \right)^{n}

(e) El exponente es un positivo par.

Considérese las siguientes expresiones:

d' = \left(\frac{a}{b} \right)^{n} y c' = \left(\frac{a}{b} \right)^{n}

Si n es par, entonces d' = c' y la proposición es verdadera.

Por tanto, se concluye que es falso que toda potencia que se obtiene de elevar a un mismo exponente un número racional y su opuesto es la misma.

3 0
3 years ago
I'll give brainliest to the correct answer! (Picture below)
Lina20 [59]

9514 1404 393

Answer:

  D.  7

Step-by-step explanation:

The equation is ...

  x = a(y +1)² -3

For the point (x, y) = (4, 0), we have ...

  4 = a(0 -1)² -3

  7 = a . . . . . . . . . . . . add 3, simplify

The leading coefficient is 7.

6 0
3 years ago
Other questions:
  • What is 3,108 rounded to the nearest thousand
    9·2 answers
  • G(C)=c(4c+8)(c-1) which values are equal to 0?
    14·1 answer
  • What is an algebraic expression for 32 more than a number n
    6·2 answers
  • Is what I did right?
    8·2 answers
  • Help umm how do i do this im dumb idk how to do it :(
    5·1 answer
  • A fair coin is flipped four times. Use a tree diagram to find the probability of observing exactly two heads.
    13·1 answer
  • A baseball card that originally cost $24 has been decreasing in value
    8·1 answer
  • Which of the following expressions are equivalent to 7×7×7×7 ? Select all that apply.
    8·1 answer
  • You have recently begun reasearching phone billing plans. Phone company A charges a flat rate of $75 a month. A flat rate means
    13·1 answer
  • The slope in the simplest form
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!