Because Daltons theory was more in-depth and persist then Democritus.
Answer:
Explanation:
1. What is seen after the x-ray examination is the "picture" of the bone. X-rays are ionizing radiation that produce picture of bones when the body is subjected to the rays.
The bone is visible because the rays cannot penetrate hard surfaces like bones but can penetrate tissues and organs that are soft. Hence, the "picture" seen is just a shadow cast by the bones.
2. Airports and most transportation stations use thermal devices such as infrared thermometers to check for a spike in temperature of passengers. This is because symptomatic carriers of the virus will normally run a high temperature or fever.
3. When white light passes through a prism, the incident ray of the white disperses to produce different constituent colours (which can be seen if done practically).
Answer:
The pressure is the same on points that are at the same level but on opposite sides.
Answer:

Explanation:
Δ
- Δ
is the difference in velocity before and after a given time.
is the acceleration of the object during this time.
is time
is another way to write this equation.
- The Δ symbol represents "the difference between the initial and final values of a magnitude or vector", so Δ


- I rearranged this equation to solve for
, but this is a step that you don't need to take, it's just good to get in the habit of doing this. - Plug in the given values. Note that our final velocity is
, because the car travels until at <em>rest</em>.
![a=\frac{v_f-v_i}{t}\\a=\frac{(0)-[(17.1\frac{miles}{hour} )(\frac{hour}{3600s})(\frac{1609.34m}{mile})]}{9.7s}](https://tex.z-dn.net/?f=a%3D%5Cfrac%7Bv_f-v_i%7D%7Bt%7D%5C%5Ca%3D%5Cfrac%7B%280%29-%5B%2817.1%5Cfrac%7Bmiles%7D%7Bhour%7D%20%29%28%5Cfrac%7Bhour%7D%7B3600s%7D%29%28%5Cfrac%7B1609.34m%7D%7Bmile%7D%29%5D%7D%7B9.7s%7D)
- Our initial velocity is in mph, something not in standard units, so if not changed, you will get an incorrect answer. What you need to do is cancel out the units your prior value had using division and multiplication, and at the same time multiply and divide the correct numbers and units into your equation. Or look up a converter.
![a=\frac{(0)-[(17.1\frac{miles}{hour} )(\frac{hour}{3600s})(\frac{1609.34m}{mile})]}{9.7s}\\a=\frac{0m/s-7.6m/s}{9.7s} \\a=\frac{-7.6m/s}{9.7s}](https://tex.z-dn.net/?f=a%3D%5Cfrac%7B%280%29-%5B%2817.1%5Cfrac%7Bmiles%7D%7Bhour%7D%20%29%28%5Cfrac%7Bhour%7D%7B3600s%7D%29%28%5Cfrac%7B1609.34m%7D%7Bmile%7D%29%5D%7D%7B9.7s%7D%5C%5Ca%3D%5Cfrac%7B0m%2Fs-7.6m%2Fs%7D%7B9.7s%7D%20%5C%5Ca%3D%5Cfrac%7B-7.6m%2Fs%7D%7B9.7s%7D)
- if you converted correctly, your answer for
will be ≅
. - Now divide. Notice that the units for acceleration are
or <em>meters per second, per second</em>.

- Our final answer is <em>negative </em>because the car is <em>slowing down</em>. Do not square this answer as the square symbol only applies to the units, not the magnitude.
We have volume of gasoline = 14.0 gallon
Time taken to fill automobile tank = 1.50 minutes
So volume rate = 14.0 gallon/1.50 minutes = 9.33 gallon/ minute
We have density of gasoline = 0.77 kg/L = 6.073 lb/US gal
Mass rate = Density * Volume rate
= 9.33 gallon/ minute*6.073 lb/US gal = 56.68 lb/min
So mass flow rate delivered by the gasoline pump in lbm/min = 56.68