1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
mrs_skeptik [129]
2 years ago
7

Determine the value of n so that the vectors A and B are perpendicular: Ā = î + 5j + nk and B = 2î - j + k

Physics
1 answer:
Tanya [424]2 years ago
6 0

If \vec A and \vec B are perpendicular, then their dot product is zero. This means

\vec A \cdot \vec B = (\vec\imath + 5\,\vec\jmath + n\,\vec k) \cdot (2\,\vec\imath - \vec\jmath + \vec k) = 2 - 5 + n = 0

Solving for n is trivial; it follows that n = 3.

You might be interested in
How much work did the movers do (horizontally) pushing a 41.0-kg crate 10.6 m across a rough floor without acceleration, if the
VLD [36.1K]

Answer:

The required work done is 2555.448~J

Explanation:

Consider 'F' is the applied force on the crate and 'f' be the force created by friction. According to the figure if '\mu_{k}' be the coefficient of friction, then

f = \mu_{k} \times N = \mu_{k} \times Mg

where 'M', 'N' and 'g' are the mass of the crate, the normal force aced upon the block and the acceleration due to gravity respectively.

Since the application of force by the movers does not create any acceleration to the block, we can write

F = f = \mu_{k} \times M \times g = 0.6 \times 41~Kg~ \times 9.8~m~s^{-2} = 241.08~N

So the work done (W) in moving the crate by a distance s = 10.6 m is

W = F \times s = 241.08~N \times 10.6~m = 2555.448 J

5 0
3 years ago
A 4000 kg satellite is placed 2.60 x 10^6 m above the surface of the Earth.
mash [69]

a) The acceleration of gravity is 4.96 m/s^2

b) The critical velocity is 6668 m/s (24,006 km/h)

c) The period of the orbit is 8452 s

d) The satellite completes 10.2 orbits per day

e) The escape velocity of the satellite is 9430 m/s

f) The escape velocity of the rocket is 11,191 m/s

Explanation:

a)

The acceleration of gravity for an object near a planet is given by

g=\frac{GM}{(R+h)^2}

where

G is the gravitational constant

M is the mass of the planet

R is the radius of the planet

h is the height above the surface

In this problem,

M=5.98\cdot 10^{24} kg (mass of the Earth)

R=6.37\cdot 10^6 m (Earth's radius)

h=2.60\cdot 10^6 m (altitude of the satellite)

Substituting,

g=\frac{(6.67\cdot 10^{-11})(5.98\cdot 10^{24}}{(6.37\cdot 10^6 + 2.60\cdot 10^6)^2}=4.96 m/s^2

b)

The critical velocity for a satellite orbiting around a planet is given by

v=\sqrt{\frac{GM}{R+h}}

where we have again:

M=5.98\cdot 10^{24} kg (mass of the Earth)

R=6.37\cdot 10^6 m (Earth's radius)

h=2.60\cdot 10^6 m (altitude of the satellite)

Substituting,

v=\sqrt{\frac{(6.67\cdot 10^{-11})(5.98\cdot 10^{24}}{(6.37\cdot 10^6 + 2.60\cdot 10^6)}}=6668 m/s

Converting into km/h,

v=6668 m/s \cdot \frac{3600 s/h}{1000 m/km}=24,006 km/h

c)

The period of the orbit is given by the circumference of the orbit divided by the velocity:

T=\frac{2\pi (R+h)}{v}

where

R=6.37\cdot 10^6 m

h=2.60\cdot 10^6 m

v = 6668 m/s

Substituting,

T=\frac{2\pi (6.37\cdot 10^6 + 2.60\cdot 10^6)}{6668}=8452 s

d)

One day consists of:

t = 24 \frac{hours}{day} \cdot 60 \frac{min}{hours} \cdot 60 \frac{s}{min}=86400 s

While the period of the orbit is

T = 8452 s

So, the number of orbits completed by the satellite in one day is

n=\frac{t}{T}=\frac{86400}{8452}=10.2

e)

The escape velocity for an object in the gravitational field of a planet is given by

v=\sqrt{\frac{2GM}{R+h}}

where here we have:

M=5.98\cdot 10^{24} kg

R=6.37\cdot 10^6 m

h=2.60\cdot 10^6 m

Substituting, we find

v=\sqrt{\frac{2(6.67\cdot 10^{-11})(5.98\cdot 10^{24}}{(6.37\cdot 10^6 + 2.60\cdot 10^6)}}=9430 m/s

f)

We can apply again the formula to find the escape velocity for the rocket:

v=\sqrt{\frac{2GM}{R+h}}

Where this time we have:

M=5.98\cdot 10^{24} kg

R=6.37\cdot 10^6 m

h=0, because the rocket is located at the Earth's surface, so its altitude is zero.

And substituting,

v=\sqrt{\frac{2(6.67\cdot 10^{-11})(5.98\cdot 10^{24}}{(6.37\cdot 10^6)}}=11,191 m/s

Learn more about gravitational force:

brainly.com/question/1724648

brainly.com/question/12785992

#LearnwithBrainly

6 0
4 years ago
How does radioactive decay work
Lesechka [4]

Answer:

Radioactive decay is the spontaneous breakdown of an atomic nucleus resulting in the release of energy and matter from the nucleus. Remember that a radioisotope has unstable nuclei that does not have enough binding energy to hold the nucleus together.

Explanation:

6 0
4 years ago
A small rubber ball is launched by a compressed-air cannon from ground level with an initial speed of 11.8 m/s directly upward.
Fantom [35]

Answer:

7.09683 m

1.20285 s

2.4057 s

11.8 m/s

Explanation:

t = Time taken

u = Initial velocity

v = Final velocity

s = Displacement

a = Acceleration

g = Acceleration due to gravity = 9.81 m/s² (negative up, positive down)

From equation of motion we have

v^2-u^2=2as\\\Rightarrow s=\frac{v^2-u^2}{2a}\\\Rightarrow s=\frac{0^2-11.8^2}{2\times -9.81}\\\Rightarrow s=7.09683\ m

The maximum height above the ground that the ball reaches is 7.09683 m

v=u+at\\\Rightarrow t=\frac{v-u}{a}\\\Rightarrow t=\frac{0-11.8}{-9.81}\\\Rightarrow t=1.20285\ s

Time taken to go up is 1.20285 s it will take the same time to come down so total time taken to reach the ground after it is shot is 1.20285+1.20285 = 2.4057 s

v=u+at\\\Rightarrow v=0+9.81\times 1.20285\\\Rightarrow v=11.8\ m/s

The velocity just before it hits the ground is 11.8 m/s

6 0
3 years ago
Which part of the microscope is the circular area on the stage that light passes through?
patriot [66]

Answer: The part of the microscope that is the circular area is the APERTURE

I hope this helped!

6 0
2 years ago
Other questions:
  • Rachel is helping her younger brother replace a broken part in his toy ambulance this part is responsible for converting electri
    9·1 answer
  • Which of these is not a component of physical fitness
    5·2 answers
  • How does the gravitational force between two objects change if the mass of
    8·1 answer
  • Book sliding across a frictionless table would never stop moving, even though there is
    11·1 answer
  • Gender plays an important role in the six components of health. T F
    11·2 answers
  • a ball is thrown down at 25 m/s from a 500m tall building. how fast is it traveling when it hits the ground?
    12·1 answer
  • a red kangaroo can hop at speeds of 65 km/hr. how much time will it take the kangaroo to hop 0.25 km at that speed?
    10·1 answer
  • Howkim has two magnetic first he put gthem beside
    9·1 answer
  • 5. How much does a 20 m x 10 m x 8 m swimming pool filled with water weigh? Assume that water has a density of 62 kg/m².​
    12·2 answers
  • a force of 1.35 newtons is required to accelerate a book by 1.5 meters/second2 along a frictionless surface. what is the mass of
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!