The cause of attraction and movement in terms of repulsion and attraction is caused electromagnetic properties of the particles. The basic rule of magnetism is like attracts unlike while like repels like. This rule is useful in the application of electricity
Answer:
(B) 0.06W
Explanation:
power absorbed by the resistor is given by
Where V = voltage
R= resistance
I = current through the circuit
we have given V =12 Volt and resistance =2.4 K
current 
power using voltage and resistance equation
=0.06W
using current equation
= 0.06W
A. The acceleration of the ball while it is in flight?
magnitude is 0 m/s² (magnitude is zero)
B. The velocity of the ball when it reaches its maximum height is 0 m/s (magnitude is zero)
C. The initial velocity of the ball 8.036 m/s upward
D. The maximum height reached by the ball is 3.29 m
<h3>A. How to determine the acceleration in the flight</h3>
Considering that the ball came to rest after 1.64s, it means the entire acceleration of the flight is zero as the ball was not moving in any form again.
<h3>B. How to determine the velocity at maximum height</h3>
At maximum height, the velocity of the ball is zero as it no longer has magnitude to keep going upwards. Hence the ball begins to ball down.
<h3>C. How to determine the initial velocity</h3>
- Acceleration due to gravity (g) = 9.8 m/s²
- Final velocity (v) = 0 m/s
- Time of flight (T) = 1.64 s
- Time to reach maximum height (t) = T / 2 = 1.64 / 2 = 0.82 s
- Initial velocity (u) =?
v = u - gt (since the ball is going against gravity)
0 = u - (9.8 × 0.82)
0 = u - 8.036
Collect like terms
u = 0 + 8.036
u = 8.036 m/s upward
<h3>D. How to determine the maximum height reached by the ball</h3>
- Time to reach maximum height (t) = T / 2 = 1.64 / 2 = 0.82 s
- Acceleration due to gravity (g) = 9.8 m/s²
- Maximum height (h)
h = ½gt²
h = ½ × 9.8 × 0.82²
h = 3.29 m
Learn more about motion under gravity:
brainly.com/question/20385439
#SPJ1
The answer is A.
When a substance is a gas, it fills its container no matter how many particles it's made of, however the number of particles present will directly affect the pressure and temperature of the system.