Answer:
Equation of Reaction
2AgNO3 + BaCl2 === 2AgCl + Ba(NO3)2
Molar Mass of AgNO3 = 170g/mol
Moles of reacting AgNO3 = 100g/170gmol-¹
=0.588moles of AgNO3
From the equation of reaction...2moles of AgNO3 reacts to Produce 2Moles of Silver Chloride
So Their ratio is 2:2.
This means that 0.588Moles of AgCl Will be produced too.
ANSWER...0.588MOLES OF AgCl WILL BE PRODUCED.
Answer:
0.00471 grams H₂O
Explanation:
To determine the mass, you need to use the following equation:
Q = mcΔT
In this equation,
-----> Q = energy/heat (J)
-----> m = mass (g)
-----> c = specific heat capacity (J/g°C)
-----> ΔT = temperature change (°C)
The specific heat capacity of water is 4182 J/g°C. You can plug the given values into the equation and simplify to isolate "c".
Q = 0.709 J c = 4182 J/g°C
m = ? g ΔT = 0.036 °C
Q = mcΔT <----- Equation
0.709 J = m(4182 J/g°C)(0.036 °C) <----- Insert values
0.709 J = m(150.552) <----- Multiply 4182 and 0.036
0.00471 = m <----- Divide both sides by 150.552
Answer: the distance of energy from point d to e
Answer is: pH value of weak is 3.35.
Chemical reaction (dissociation): HA(aq) → H⁺(aq) + A⁻(aq).
c(HA) = 0.0055 M.
α = 8.2% ÷ 100% = 0.082.
[H⁺] = c(HA) · α.
[H⁺] = 0.0055 M · 0.082.
[H⁺] = 0.000451 M.
pH = -log[H⁺].
pH = -log(0.000451 M).
pH = 3.35.
pH (potential of
hydrogen) is a numeric scale used to specify the acidity or basicity <span>an aqueous solution.</span>