Number three. How water evaporates and then forms rain and snow.
Answer:
9.6 m
Explanation:
This is a case of motion under variable acceleration . So no law of motion formula will be applicable here. We shall have to integrate the given equation .
a = 3.6 t + 5.6
d²x / dt² = 3.6 t + 5.6
Integrating on both sides
dx /dt = 3.6 t² / 2 + 5.6 t + c
where c is a constant.
dx /dt = 1.8 t² + 5.6 t + c
when t = 0 , velocity dx /dt is zero
Putting these values in the equation above
0 = 0 +0 + c
c = 0
dx /dt = 1.8 t² + 5.6 t
Again integrating on both sides
x = 1.8 t³ / 3 + 5.6 x t² /2 + c₁
x = 0.6 t³ + 2.8 t² + c₁
when t =0, x = 0
c₁ = 0
x = 0.6 t³ + 2.8 t²
when t = 1.6
x = .6 x 1.6³ + 2.8 x 1.6²
= 2.4576 + 7.168
= 9.6256
9.6 m
<span>It acts as a sunscreen to </span>protect us<span> against UV radiation. </span>
Answer:
1/3
Explanation:
We can solve the problem by using the lens equation:

where
f is the focal length
p is the distance of the object from the lens
q is the distance of the image from the lens
Here we have a divering lens, so the focal length must be taken as negative (-f). Moreover, we know that the object is placed at a distance of twice the focal length, so

So we can find q from the equation:

Now we can find the magnification of the image, given by:

Explanation:
PEgrav = m *• g • h
In the above equation, m represents the mass of the object, h represents the height of the object and g represents the gravitational field strength (9.8 N/kg on Earth) - sometimes referred to as the acceleration of gravity.
www.physicsclassroom.com › energy
Potential Energy - The