Weight. Because there is less gravity on the moon.
Answer:
Eo = 9.796 x 10^2 N/C
Bo = 3.266 x 10^-6 T
Explanation:
Given
Wavelength λ = 633 nm
Diameter of the beam D = 1.0 mm
Power P = 1.0 mW
Solution
Radius of the beam r = D/2 = 0.5 mm = 0.0005 m
Area of cross section

Intensity

Amplitude of Electric Field

Amplitude of Magnetic Field

Particles become farther apart from each other in the change of state between liquid and gas.
Hope that helped =)
Explanation:
It is given that,
An electric dipole consists of charges +2e and -2e separated by 0.82 nm
Charge, 
Distance between charges, 
Electric field strength, 
(a) The magnitude of the torque on the dipole is given by :

When dipole moment is parallel to the electric field, 


(b) When the dipole is perpendicular to the electric field, 

(Since, p = q × d)


(c) When the dipole moment is anti parallel to the electric field, 

Since, 

Hence, this is the required solution.
There are many ways to solve this but I prefer to use the energy method. Calculate the potential energy using the point then from Potential Energy convert to Kinetic Energy at each points.
PE = KE
From the given points (h1 = 45, h2 = 16, h<span>3 </span>= 26)
Let’s use the formula:
v2= sqrt[2*Gravity*h1] where the gravity is equal to 9.81m/s2
v3= sqrt[2*Gravity*(h1 - h3 )] where the gravity is equal to 9.81m/s2
v4= sqrt[2*Gravity*(h1 – h2)] where the gravity is equal to 9.81m/s2
Solve for v2
v2= sqrt[2*Gravity*h1]
= √2*9.81m/s2*45m
v2= 29.71m/s
v3= sqrt[2*Gravity*(h1 - h3 )
=√2*9.81m/s2*(45-26)
=√2*9.81m/s2*19
v3=19.31m/s
v4= sqrt[2*Gravity*(h1 – h2)]
=√2*9.81m/s2*(45-16)
=√2*9.81m/s2*(29)
v4=23.85m/s