1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Anastasy [175]
3 years ago
11

Excited hydrogen atoms radiate energy in the _________

Physics
1 answer:
sveticcg [70]3 years ago
7 0

Answer:

infrared, visible and ultraviolet regions.

Explanation:

You might be interested in
For a given initial projectile speed Vo, calculate what launch angle A gives the longest range R. Show your work, don't just quo
pickupchik [31]
The optimal angle of 45° for maximum horizontal range is only valid when initial height is the same as final height. 

<span>In that particular situation, you can prove it like this: </span>

<span>initial velocity is Vo </span>
<span>launch angle is α </span>

<span>initial vertical velocity is </span>
<span>Vv = Vo×sin(α) </span>

<span>horizontal velocity is </span>
<span>Vh = Vo×cos(α) </span>

<span>total time in the air is the the time it needs to fall back to a height of 0 m, so </span>
<span>d = v×t + a×t²/2 </span>
<span>where </span>
<span>d = distance = 0 m </span>
<span>v = initial vertical velocity = Vv = Vo×sin(α) </span>
<span>t = time = ? </span>
<span>a = acceleration by gravity = g (= -9.8 m/s²) </span>
<span>so </span>
<span>0 = Vo×sin(α)×t + g×t²/2 </span>
<span>0 = (Vo×sin(α) + g×t/2)×t </span>
<span>t = 0 (obviously, the projectile is at height 0 m at time = 0s) </span>
<span>or </span>
<span>Vo×sin(α) + g×t/2 = 0 </span>
<span>t = -2×Vo×sin(α)/g </span>

<span>Now look at the horizontal range. </span>
<span>r = v × t </span>
<span>where </span>
<span>r = horizontal range = ? </span>
<span>v = horizontal velocity = Vh = Vo×cos(α) </span>
<span>t = time = -2×Vo×sin(α)/g </span>
<span>so </span>
<span>r = (Vo×cos(α)) × (-2×Vo×sin(α)/g) </span>
<span>r = -(Vo)²×sin(2α)/g </span>

<span>To find the extreme values of r (minimum or maximum) with variable α, you must find the first derivative of r with respect to α, and set it equal to 0. </span>

<span>dr/dα = d[-(Vo)²×sin(2α)/g] / dα </span>
<span>dr/dα = -(Vo)²/g × d[sin(2α)] / dα </span>
<span>dr/dα = -(Vo)²/g × cos(2α) × d(2α) / dα </span>
<span>dr/dα = -2 × (Vo)² × cos(2α) / g </span>

<span>Vo and g are constants ≠ 0, so the only way for dr/dα to become 0 is when </span>
<span>cos(2α) = 0 </span>
<span>2α = 90° </span>
<span>α = 45° </span>
4 0
3 years ago
Find the magnitude of the free-fall acceleration at the orbit of the Moon (a distance of 60RE from the center of the Earth with
Ede4ka [16]

Answer:

The magnitude of the free-fall acceleration at the orbit of the Moon is 2.728\times 10^{-3}\,\frac{m}{s^{2}} (\frac{2.784}{10000}\cdot g, where g = 9.8\,\frac{m}{s^{2}}).

Explanation:

According to the Newton's Law of Gravitation, free fall acceleration (g), in meters per square second, is directly proportional to the mass of the Earth (M), in kilograms, and inversely proportional to the distance from the center of the Earth (r), in meters:

g = \frac{G\cdot M}{r^{2}} (1)

Where:

G - Gravitational constant, in cubic meters per kilogram-square second.

M - Mass of the Earth, in kilograms.

r - Distance from the center of the Earth, in meters.

If we know that G = 6.674\times 10^{-11}\,\frac{m^{3}}{kg\cdot s^{2}}, M = 5.972\times 10^{24}\,kg and r = 382.26\times 10^{6}\,m, then the free-fall acceleration at the orbit of the Moon is:

g = \frac{\left(6.674\times 10^{-11}\,\frac{m^{3}}{kg\cdot s^{2}} \right)\cdot (5.972\times 10^{24}\,kg)}{(382.26\times 10^{6}\,m)^{2}}

g = 2.728\times 10^{-3}\,\frac{m}{s^{2}}

6 0
3 years ago
two objects are in uniform circular motion at the same speed but at different radii. the ones with the __ radius has the largest
Cerrena [4.2K]

Answer:the one with the smaller radius has the highest centripetal force

Explanation:

5 0
3 years ago
Read 2 more answers
what is the acceleration of a 2,000- kilogram truck if a force of 4,200. N is used to make it start moving forward?
cupoosta [38]

Newton's 2nd law of motion:              Force = (mass) x (acceleration)

Divide each side by (mass) :              Acceleration = (force) / (mass)

       Acceleration of the truck = (4,200 N) / (2,000 kg) = 2.1 m/s²

5 0
3 years ago
I need help with this
TEA [102]

Answer:

___

Explanation:

3 0
4 years ago
Read 2 more answers
Other questions:
  • The tidal bulge on the side of the earth opposite the moon is due to _______ .
    13·2 answers
  • a.Calculate the average speed (in km/h) of Charlie, who runs to the store 4 kilometers away in 30 minutes. b.Calculate the dista
    13·1 answer
  • If two waves with identical crests and troughs meet, what is happening? The wave is reflecting. Constructive interference is occ
    9·2 answers
  • ____ and ____ both discovered electromagnetic induction. This is that electric current could be produced in a wire by moving a m
    10·1 answer
  • In the process of electricity, what flows through the wires?
    9·1 answer
  • Please help correct answering get 20 points (physical science btw )
    5·1 answer
  • Explain where you observe reflection, refraction, and absorption of light in your everyday activities (10 points)
    6·1 answer
  • The table below shows the measurements you took in an experiment. Trial Length ( miles) 1.9 4.2 N 3 5.9 4 What is the longest me
    13·1 answer
  • A body is acted upon by a constant force directed towards a fixed point. the magnitude of the force varies inversely as the squa
    7·2 answers
  • Is a neutron positive ornegative
    9·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!