Answer:
a = 4.9(1 - sinθ - 0.4cosθ)
Explanation:
Really not possible without a complete setup.
I will ASSUME that this an Atwood machine with two masses (m) connected by an ideal rope passing over an ideal pulley. One mass hangs freely and the other is on a slope of angle θ to the horizontal with coefficient of friction μ. Gravity is g
F = ma
mg - mgsinθ - μmgcosθ = (m + m)a
mg(1 - sinθ - μcosθ) = 2ma
½g(1 - sinθ - μcosθ) = a
maximum acceleration is about 2.94 m/s² when θ = 0
acceleration will be zero when θ is greater than about 46.4°
Answer:
See the answer below
Explanation:
Newton's third law states that for every action, there will always be an opposing reaction of equal magnitude to the action.
<em>Hence, the wall will exert an equal opposing force to the head and the roommate will feel this opposing force as pains and/or headache. </em>
Answer:
The answer is D.
Explanation:
One explanation I can give you is that generally waves travel faster through denser medium because the particles are tightly packed together and so they can transfer energy faster. But to verify the answer, I used Process of Elimination because the other 3 answers are not true. Choice A is entirely true, wave speed depends on the medium it is travelling through, so there is no way choice A is correct. Choice B is wrong because for example if we take light(an EM wave), it travels at a constant speed of 3.0x10^8 m/s in a vacuum and in open space. So, that proves that air or vacuum do not affect the speed of the wave in another medium. Choice C is related to Choice B, we just proved the speed of light is constant everywhere whereas choice C says that in a vacuum the speed is halved. Good luck in your Physics class and I hope for your best!