1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
kotegsom [21]
3 years ago
9

Explain how thermal energy (temperature) affects chemical changes.

Physics
1 answer:
Monica [59]3 years ago
8 0
If bonds are broken, the energy is released, and if bonds are formed, energy is absorbed. During conversions from chemical energy to thermal energy, the energy stored in the chemical bonds are released and this energy causes surrounding molecules to move faster thus increasing the thermal energy of a substance.
You might be interested in
A .5kg bird is perched on its nest so that it has 50J of potential energy. how far is it off the of the ground?
pshichka [43]

It is 10.20 m from the ground.

<u>Explanation:</u>

<u>Given:</u>

m = 0.5 kg

PE = 50 J

We know that the Potential energy is calculated by the formula:

P. E = m \times g \times h

where m is the is mass in kg;  g  is acceleration due to gravity which is 9.8 m/s  and  h  is height in meters.

PE is the Potential Energy.

Potential Energy is the amount of energy stored when an object is stationary.

Here, if we substitute the values in the formula, we get

P. E = m \times g \times h

50 = 0.5 × 9.8 × h

50 = 4.9 × h

h = \frac {50} {4.9}

h = 10.20 m

3 0
3 years ago
One of the harmonics on a string 1.30m long has a frequency of 15.60 Hz. The next higher harmonic has a frequency of 23.40 Hz. F
Alja [10]

Answer:

\large \boxed{\text{(a) 7.800 Hz; (b) 20.3 m/s; 40.6 m/s; 60.8 m/s}}

Explanation:

a) Fundamental frequency

A harmonic is an integral multiple of the fundamental frequency.

\dfrac{\text{23.40 Hz}}{\text{15.60 Hz}} = \dfrac{1.500}{1} \approx \dfrac{3}{2}

f = \dfrac{\text{24.30 Hz}}{3} = \textbf{7.800 Hz}

b) Wave speed

(i) Calculate the wavelength

In a  fundamental vibration, the length of the string is half the wavelength.

\begin{array}{rcl}L & = & \dfrac{\lambda}{2}\\\\\text{1.30 m} & = & \dfrac{\lambda}{2}\\\\\lambda & = & \text{2.60 m}\\\end{array}

(b) Calculate the speed s

\begin{array}{rcl}v_{1}& = & f_{1}\lambda\\& = & \text{7.800 s}^{-1} \times \text{2.60 m}\\& = & \textbf{20.3 m/s}\\\end{array}

\begin{array}{rcl}v_{2}& = & f_{2}\lambda\\& = & \text{15.60 s}^{-1} \times \text{2.60 m}\\& = & \textbf{40.6 m/s}\\\end{array}

\begin{array}{rcl}v_{3}& = & f_{3}\lambda\\& = & \text{23.40 s}^{-1} \times \text{2.60 m}\\& = & \textbf{60.8 m/s}\\\end{array}

4 0
4 years ago
6 A test of a driver's perception/reaction time is being conducted on a special testing track with level, wet pavement and a dri
mylen [45]

Answer:

a. 10.5 s b. 6.6 s

Explanation:

a. The driver's perception/reaction time before drinking.

To find the driver's perception time before drinking, we first find his deceleration from

v² = u² + 2as where u = initial speed of driver = 50 mi/h = 50 × 1609 m/3600 s = 22.35 m/s, v = final speed of driver = 0 m/s (since he stops), a = deceleration of driver and s = distance moved by driver = 385 ft = 385 × 0.3048 m = 117.35 m

So, a = v² - u²/2s

substituting the values of the variables into the equation, we have

a = v² - u²/2s

a = (0 m/s)² - (22.35 m/s)²/2(117.35 m)

a =  - 499.52 m²/s²/234.7 m

a = -2.13 m/s²

Using a = (v - u)/t where u = initial speed of driver = 50 mi/h = 50 × 1609 m/3600 s = 22.35 m/s, v = final speed of driver = 0 m/s (since he stops), a = deceleration of driver = -2.13 m/s² and t = reaction time

So, t = (v - u)/a

Substituting the values of the variables into the equation, we have

t = (0 m/s - 22.35 m/s)/-2.13 m/s²

t = - 22.35 m/s/-2.13 m/s²

t = 10.5 s

b. The driver's perception/reaction time after drinking.

To find the driver's perception time after drinking, we first find his deceleration from

v² = u² + 2as where u = initial speed of driver = 50 mi/h = 50 × 1609 m/3600 s = 22.35 m/s, v = final speed of driver = 30 mi/h = 30 × 1609 m/3600 s = 13.41 m/s, a = deceleration of driver and s = distance moved by driver = 385 ft = 385 × 0.3048 m = 117.35 m

So, a = v² - u²/2s

substituting the values of the variables into the equation, we have

a = v² - u²/2s

a = (13.41 m/s)² - (22.35 m/s)²/2(117.35 m)

a = 179.83 m²/s² - 499.52 m²/s²/234.7 m

a = -319.69 m²/s² ÷ 234.7 m

a = -1.36 m/s²

Using a = (v - u)/t where u = initial speed of driver = 50 mi/h = 50 × 1609 m/3600 s = 22.35 m/s, v = final speed of driver = 30 mi/h = 30 × 1609 m/3600 s = 13.41 m/s, a = deceleration of driver = -1.36 m/s² and t = reaction time

So, t = (v - u)/a

Substituting the values of the variables into the equation, we have

t = (13.41 m/s - 22.35 m/s)/-1.36 m/s²

t = - 8.94 m/s/-1.36 m/s²

t = 6.6 s

4 0
3 years ago
A horizontal spring with stiffness 0.4 N/m has a relaxed length of 11 cm (0.11 m). A mass of 21 grams (0.021 kg) is attached and
riadik2000 [5.3K]

Answer:

0.6983 m/s

Explanation:

k = spring constant of the spring = 0.4 N/m

L₀ = Initial length = 11 cm = 0.11 m

L = Final length = 27 cm = 0.27 m

x = stretch in the spring = L - L₀ = 0.27 - 0.11 = 0.16 m

m = mass of the mass attached = 0.021 kg

v = speed of the mass

Using conservation of energy

Kinetic energy of mass = Spring potential energy

(0.5) m v² = (0.5) k x²

m v² = k x²

(0.021) v² = (0.4) (0.16)²

v = 0.6983 m/s

5 0
4 years ago
The sun can continue to exist in its present stable state for about another
Wewaii [24]

Answer:

5.5 billion years

Explanation:

The answer

3 0
3 years ago
Read 2 more answers
Other questions:
  • An automobile moves at a constant speed over the crest of a hill traveling at a speed of 88.5 km/h. At the top of the hill, a pa
    8·1 answer
  • A police officer in hot pursuit of a criminal drives her car through an unbanked circular (horizontal) turn of radius 300 m at a
    10·1 answer
  • Describe the advantages and disadvantages of keeping the road clear of ice
    6·1 answer
  • An antique carousel that’s powered by a large electric motor undergoes constant angular acceleration from rest to full rotationa
    8·1 answer
  • A car traveling at 30 m/s drives off a cliff that is 50 meters high? How far away does it land?
    7·1 answer
  • What is the difference between speed and velocity?
    14·1 answer
  • A bottle with a volume of 193 U. S. fluid gallons is filled at the rate of 1.9 g/min. (Water has a density of 1000 kg/m3, and 1
    13·1 answer
  • Ted Williams hits a baseball with an initial velocity of 120 miles per hour (176 ft/s) at an angle of θ = 35 degrees to the hori
    5·1 answer
  • Bill and Janet are pulling on opposite sides of a table. Bill pulls with a force of 250 N to the left, and Janet pulls with a fo
    7·1 answer
  • When placed at a certain point, a
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!