Answer:
The table tennis balls represent neutrons that are released when the nucleus splits and cause other nuclei to split
Explanation:
Nuclear fission is defined as the separation of a nucleus into two smaller nuclei.
It takes a neutron to set off a nuclear fission reaction. When that occurs, neutrons are released and those neutrons in turn are what set off other nuclear fissions. This is defined as a Nuclear Fission Chain Reaction. In the model, the one tennis ball that will be thrown will be modeled as the starting neutron that sets of the initial (first) fission. The mouse traps with tennis balls represent the other nucleuses waiting to be struck by the one tennis ball. Once the initial tennis ball strikes the first mouse trap, that mouse trap will release its tennis ball hitting others and continuing the cycle.
It can also be modeled as such:
Answer:
I think the answer should be 147
Explanation:
Answer:
- <u>Cadmium has larger atomic radius than sulfur.</u>
Explanation:
Down a period, atomic radii decrease from left to right due to the increase in the number of protons and electrons across a period: when a proton is added the pull of the electrons towards the nucleus is larger, so the size of the atom decreases.
Hence, you can compare the elements that belong to a same period and predict that the atom with lower atomic number (number of protons) will haver larger atomic radius. With that:
- Oxygen and fluorine are in the period 3, being oxygen to the left of fluorine, so oxygen is larger than fluorine.
- Sulfur and chlorine are in the period 4, being sulfur to the left of chlorine, so sulfur is larger than chlorine.
Now see whan happens down a group. Atomic radius increases from top to bottom within a group due to electron shielding. That permits you to compare the size of the elements in a group:
- Fluorine and chlorine are in the same group (17), with chlorine directly below fluorine, so the atomic radius of chlorine is larger than the atomic radius of fluorine.
- Sulfur and oxygen are in the same group (16), with sulfur directlly below oxygen, so sulfur the atomic radius of sulfur is larger than the atocmi radius of oxygen.
So far, you can rank the atomic radius of sulfur, chlorine, fluorine, and oxygen, in increasing order as:
- O < F < Cl < S, concluding that O, F, and Cl have smaller atomic radius than S.
Cadmiun, Cd, is to the left and below sulfur, so both electron shielding (down a group) and increase of the number of protons (down a period) lead to predict the cadmium has a larger atomic radius than sulfur.
Explanation:
the pH of the solution defined as negatuve logarithm of
ion concentration.
![pH=-\log[H^+]](https://tex.z-dn.net/?f=pH%3D-%5Clog%5BH%5E%2B%5D)
1. Hydrogen ion concentration when pH of the solution is 11.
![11=-\log[H^+]](https://tex.z-dn.net/?f=11%3D-%5Clog%5BH%5E%2B%5D)
..(1)
At pH = 11, the concentration of
ions is
.
2. Hydrogen ion concentration when the pH of the solution is 6.
![6=-\log[H^+]'](https://tex.z-dn.net/?f=6%3D-%5Clog%5BH%5E%2B%5D%27)
..(2)
At pH = 6, the concentration of
ions is
.
3. On dividing (1) by (2).
![\frac{[H^+]}{[H^+]'}=\frac{1\times 10^{-11} mol/L}{1\times 10^{-6} mol/L}=1\times 10^{-5}](https://tex.z-dn.net/?f=%5Cfrac%7B%5BH%5E%2B%5D%7D%7B%5BH%5E%2B%5D%27%7D%3D%5Cfrac%7B1%5Ctimes%2010%5E%7B-11%7D%20mol%2FL%7D%7B1%5Ctimes%2010%5E%7B-6%7D%20mol%2FL%7D%3D1%5Ctimes%2010%5E%7B-5%7D%20)
The ratio of hydrogen ions in solution of pH equal to 11 to the solution of pH equal to 6 is
.
4. Difference between the
ions at both pH:

This means that Hydrogen ions in a solution at pH = 7 has
ions fewer than in a solution at a pH = 6
Answer: The volume occupied by 2.50 moles of
gas at STP is 56.0L
Explanation:
According to ideal gas equation:

P = pressure of gas = 1 atm (at STP)
V = Volume of gas = ?
n = number of moles = 2.50
R = gas constant =
T =temperature =
(at STP)


Thus the volume occupied by 2.50 moles of
gas at STP is 56.0L